scholarly journals Effects of Gaseous and Particulate Contaminants On Information Technology Equipment Reliability - A Review

Author(s):  
Satyam Saini ◽  
Jimil M. Shah ◽  
Pardeep Shahi ◽  
Pratik V Bansode ◽  
Dereje Agonafer ◽  
...  

Abstract Over the last decade, several hyper-scale data center companies such as Google, Facebook, and Microsoft have demonstrated the cost-saving capabilities of airside economization with direct/indirect heat exchangers by moving to chiller-less air-cooled data centers. Under pressure from data center owners, IT equipment OEMs like Dell and IBM are developing IT equipment that can withstand peak excursion temperature ratings of up to 45°C, clearly outside the recommended envelope, and into ASHRAE's A4 allowable envelope. As popular and widespread as these cooling technologies are becoming, airside economization comes with its challenges. There is a risk of pre-mature hardware failures or reliability degradation posed by uncontrolled fine particulate and gaseous contaminants in presence of temperature and humidity transients. This paper presents an in-depth review of the particulate and gaseous contamination-related challenges faced by the modern-day data center facilities that use airside economization. This review summarizes specific experimental and computational studies to characterize the airborne contaminants and associated failure modes and mechanisms. In addition, standard lab-based and in-situ test methods for measuring the corrosive effects of the particles and the corrosive gases, as the means of testing the robustness of the equipment against these contaminants, under different temperature and relative humidity conditions are also reviewed. It also outlines the cost-sensitive mitigation techniques like improved filtration strategies and methods that can be utilized for efficient implementation of airside economization.

1986 ◽  
Vol 23 (4) ◽  
pp. 573-594 ◽  
Author(s):  
P. K. Robertson

The status of in situ testing and its application to foundation engineering are presented and discussed. The in situ test methods are discussed within the framework of three groups: logging, specific, and combined test methods. The major logging test methods discussed are standard penetration test (SPT), cone penetration test (CPT), and the flat plate dilatometer test (DMT). The major specific test methods discussed are the prebored pressuremeter test (PMT), the self-bored pressuremeter test (SBPMT), and the screw plate load test (SPLT). Discussion is also presented on recent tests that combine features of logging tests (using the CPT) and specific tests (e.g. the seismic, the electrical resistivity/dielectric, and the lateral stress sensing cone penetration tests). A brief discussion is also presented on the applicability, as perceived by the author, of existing in situ test methods and the future of in situ testing applied to foundation engineering. Key words: in situ testing, foundation engineering, penetration testing, pressuremeter.


2000 ◽  
Vol 30 (4) ◽  
pp. 623-634 ◽  
Author(s):  
J Monteny ◽  
E Vincke ◽  
A Beeldens ◽  
N De Belie ◽  
L Taerwe ◽  
...  

1988 ◽  
Vol 40 (145) ◽  
pp. 234-244 ◽  
Author(s):  
R. K. Dhir ◽  
P. C. Hewlett ◽  
Y. N. Chan ◽  
F. D. Lydon ◽  
M. Al. Odaallah ◽  
...  

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Jimil M. Shah ◽  
Abel Misrak ◽  
Dereje Agonafer ◽  
Mike Kaler

Contamination due to the use of airside economizer has become a major issue that cost companies revenue. This issue will continue to rise as server components become smaller, densely packed, and as companies move into more polluted environments. Contaminants with small particles less than 10 μm are not noticeable; yet, these particles are most likely to get to areas where they can cause damage. Dust from different sources and suspended in air settles on surfaces of electrical components. The dust mainly contains two components: salts and metallic particles. The salts may be neutral or corrosive and the nature of the salt depends on the deliquescent humidity. For metallic particles, surveys are performed in various data centers in order to determine the limits in terms of weight per unit area and particle size distribution. It is necessary to first identify those contaminants that directly affect the information technology (IT) equipment in the data center. In this research, a real-world data center utilizing airside economization in an ANSI/ISA classified G2 environment was chosen for the study. Servers were removed and qualitative study of cumulative corrosion damage was carried out. The particulate contaminants were collected from different locations of a server and material characterization was performed using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). The analysis from these results helps to explain the impact of the contaminants on IT equipment reliability.


Author(s):  
Sven Fahr ◽  
Daniel Tschopp ◽  
Jan Erik Nielsen ◽  
Korbinian Kramer ◽  
Philip Ohnewein

This fact sheet presents three in situ test methods for solar collectors and solar collector arrays, namely In situ Collector Certification (ICC), Performance Check for Collector Arrays (PC) and Dynamic Collector Array Test (D-CAT). A comparison is made regarding their scopes and use cases, methodologies and outcomes, which could serve as a decision-making aid for stakeholders in selecting the procedure that best suits their needs. The analysis shows that the methods do not contradict, but rather complement each other.


2020 ◽  
Vol 103 (2) ◽  
pp. 2371-2393 ◽  
Author(s):  
Sarat Kumar Das ◽  
Ranajeet Mohanty ◽  
Madhumita Mohanty ◽  
Mahasakti Mahamaya

Sign in / Sign up

Export Citation Format

Share Document