The Effect of Wall Thermal Boundary Condition on Natural Convective Shutdown Cooling in a Gas Turbine

2021 ◽  
pp. 1-25
Author(s):  
Daniel Fahy ◽  
Peter Ireland

Abstract As a civil gas turbine cools down, asymmetric natural convective heat transfer causes the bottom sector of the rotor to cool faster than the top; this circumferential thermal gradient can potentially cause the shaft to deflect – a phenomenon called thermal or rotor bow. Rotor bow is tremendously difficult to predict due to its dependence on a number of engine design parameters, in addition to the complex nature of natural convective flows. A novel experimental facility has been developed to gain further understanding into shutdown cooling of a gas turbine. The scope of this paper is to quantify the effect of basic design features on natural convective cooling in an engine annulus during shut-down. In addition to this, a low-cost, robust thermocouple probe has been developed and validated, which allows for accurate temperature measurements in a natural convective boundary layer. An extensive experimental campaign has been completed. The key finding is that the local radial wall temperature difference was found to be the most influential parameter on the local heat transfer. Non-isothermal walls did not alter the overall distribution of the inner wall equivalent conductivity. This was true for both cylindrical and conical sections. Therefore, the mean surface heat transfer for non-isothermal inner and outer profiles, within the range −0.4<Ra/RaLc <0.4, where the thermal gradient is negative in the clockwise from top-dead- centre, can be predicted using isothermal correlations for RaLc < 5.0 × 105 and Dr < = 1.5.

Author(s):  
Daniel D. Fahy ◽  
Peter Ireland

Abstract As a civil gas turbine cools down, asymmetric natural convective heat transfer causes the bottom sector of the rotor to cool faster than the top; this circumferential thermal gradient can potentially cause the shaft to deflect — a phenomenon called thermal or rotor bow. Rotor bow is tremendously difficult to predict due to its dependence on a number of engine design parameters, in addition to the complex nature of natural convective flows. A novel experimental facility has been developed to gain further understanding into shutdown cooling of a gas turbine. The scope of this paper is to quantify the effect of basic design features on natural convective cooling in an engine annulus during shut-down; specifically the influence of the thermal boundary wall conditions and the annular diameter ratio. In addition to this, a low-cost, robust thermocouple probe has been developed and validated, which allows for accurate temperature measurements in a natural convective boundary layer. An extensive experimental campaign has been completed. The key finding is that the local radial wall temperature difference was found to be the most influential parameter on the local heat transfer. Non-isothermal walls did not alter the overall distribution of the inner wall equivalent conductivity. This was true for both cylindrical and conical sections. An appropriate characteristic length for use in the Rayleigh number definition for both the concentric cylinder and conical sections have been validated. The conical inner section (5° hade angle) did not affect the overall heat transfer in the range of conditions tested. Therefore, the mean surface heat transfer for non-isothermal inner and outer profiles, within the range −0.4 < ΔRa/RaLc < 0.4, where the thermal gradient is negative in the clockwise from top-dead-centre, can be predicted using isothermal correlations for RaLc < 5.0 × 105 and Dr <= 1.5.


1993 ◽  
Vol 17 (2) ◽  
pp. 145-160
Author(s):  
P.H. Oosthuizen ◽  
A. Sheriff

Indirect passive solar crop dryers have the potential to considerably reduce the losses that presently occur during drying of some crops in many parts of the “developing” world. The performance so far achieved with such dryers has, however, not proved to be very satisfactory. If this performance is to be improved it is necessary to have an accurate computer model of such dryers to assist in their design. An important element is any dryer model is an accurate equation for the convective heat transfer in the collector. To assist in the development of such an equation, an experimental and numerical study of the collector heat transfer has been undertaken. In the experimental study, the collector was simulated by a 1m long by 1m wide channel with a gap of 4 cm between the upper and lower surfaces. The lower surface of the channel consisted of an aluminium plate with an electrical heating element, simulating the solar heating, bonded to its lower surface. Air was blown through this channel at a measured rate and the temperature profiles at various points along the channel were measured using a shielded thermocouple probe. Local heat transfer rates were then determined from these measured temperature profiles. In the numerical study, the parabolic forms of the governing equations were solved by a forward-marching finite difference procedure.


Author(s):  
Karthik Krishnaswamy ◽  
◽  
Srikanth Salyan ◽  

The performance of a gas turbine during the service life can be enhanced by cooling the turbine blades efficiently. The objective of this study is to achieve high thermohydraulic performance (THP) inside a cooling passage of a turbine blade having aspect ratio (AR) 1:5 by using discrete W and V-shaped ribs. Hydraulic diameter (Dh) of the cooling passage is 50 mm. Ribs are positioned facing downstream with angle-of-attack (α) of 30° and 45° for discrete W-ribs and discerte V-ribs respectively. The rib profiles with rib height to hydraulic diameter ratio (e/Dh) or blockage ratio 0.06 and pitch (P) 36 mm are tested for Reynolds number (Re) range 30000-75000. Analysis reveals that, area averaged Nusselt numbers of the rib profiles are comparable, with maximum difference of 6% at Re 30000, which is within the limits of uncertainty. Variation of local heat transfer coefficients along the stream exhibited a saw tooth profile, with discrete W-ribs exhibiting higher variations. Along spanwise direction, discrete V-ribs showed larger variations. Maximum variation in local heat transfer coefficients is estimated to be 25%. For experimented Re range, friction loss for discrete W-ribs is higher than discrete-V ribs. Rib profiles exhibited superior heat transfer capabilities. The best Nu/Nuo achieved for discrete Vribs is 3.4 and discrete W-ribs is 3.6. In view of superior heat transfer capabilities, ribs can be deployed in cooling passages near the leading edge, where the temperatures are very high. The best THPo achieved is 3.2 for discrete V-ribs and 3 for discrete W-ribs at Re 30000. The ribs can also enhance the power-toweight ratio as they can produce high thermohydraulic performances for low blockage ratios.


Author(s):  
Luca Bozzi ◽  
Enrico D’Angelo ◽  
Bruno Facchini ◽  
Mirko Micio ◽  
Riccardo Da Soghe

Different labyrinth seal configurations are used in modern heavy-duty gas turbine such as see-through stepped or honeycomb seals. The characterization of leakage flow through the seals is one of the main tasks for secondary air system designers as well as the evaluation of increase in temperature due to heat transfer and windage effects. In high temperature turbomachinery applications, knowledge of the heat transfer characteristics of flow leaking through the seals is needed in order to accurately predict seal dimensions and performance as affected by thermal expansion. This paper deals with the influence of clearance on the leakage flow and heat transfer coefficient of a contactless labyrinth seal. A scaled-up planar model of the seal mounted in the inner shrouded vane of the Ansaldo AE94.3A gas turbine has been experimentally investigated. Five clearances were tested using a stationary test rig. The experiments covered a range of Reynolds numbers between 5000 and 40000 and pressure ratios between 1 and 3.3. Local heat transfer coefficients were calculated using a transient technique. It is shown that the clearance/pitch ratio has a significant effect upon both leakage loss and heat transfer coefficient. Hodkinson’s and Vermes’ models are used to fit experimental mass flow rate and pressure drop data. This approach shows a good agreement with experimental data.


2021 ◽  
Author(s):  
Igor Baybuzenko

Abstract The power generation industry is targeting heavy duty gas turbine to increase power and efficiency. Hot gas temperature and massflow are continuously being increased. It brings new challenges for the design of cooling systems for turbine blades and vanes. Up to date most of studies of heat transfer in internal cooling channels were in the range of Reynolds numbers below 80,000 for cooling air flow, for example, experimental series done by J. Chin Han et al. since 1985. Actually the range of Reynolds numbers is increased with the increase of total massflow. Extrapolation of available data is not reliable while local distribution of heat transfer coefficients becomes critical in terms of thermal stresses. Only few recent studies deal with the range of Reynolds number above 80,000, for example, in 2009 J. Chin et. al showed results for 45° angled ribs provided only area averaged values for heat transfer coefficient over one pitch and in 2003 R. Bunker showed local distribution for 45° angled ribs only. Within current study the experimental measurements of local heat transfer and friction in ribbed cooling channel were performed for Reynolds numbers in range of 100,000 – 180,000, what fits the parameters of modern and perspective heavy duty gas turbines. Using thermochromic liquid crystal technology the following rib configurations were tested: angled 45°, 60°, 90° and chevron 45°, 60°; pitch to height ratio of 10; rib turbulator height-to-channel hydraulic diameter ratio of 0.083. Maximum averaged heat transfer value was provided by 60° angled ribs. Comparison of local distribution of heat transfer coefficients for considered configurations was performed. Minimum non-uniformness of heat transfer coefficient was provided by chevron ribs, having maximum friction factor. Conjugated thermal-hydraulic analysis for cooled vane for heavy duty gas turbine was performed in order to quantify the effect of local heat transfer coefficient distribution in ribbed cooling channel. Metal temperature calculation was performed for two cases of air side thermal boundary condition application for wall surface between rib-turbulators: averaged value of heat transfer coefficient and detailed local distribution. Comparison of calculated metal temperature for 2 cases shows that usage of locally distributed air side heat transfer coefficient is important and should increase the accuracy of temperature prediction by 50°C. Consideration of local distribution of heat transfer coefficient is important for cooling design of modern heavy duty gas turbine in order to provide acceptable thermal gradients and consequently reach lifetime targets.


Author(s):  
S. A. Hippensteele ◽  
L. M. Russell ◽  
F. S. Stepka

Commercially available elements of a composite consisting of a plastic sheet coated with liquid crystal, another sheet with a thin layer of a conducting material (gold or carbon), and copper bus bar strips were evaluated and found to provide a simple, convenient, accurate, and low-cost measuring device for use in heat transfer research. The particular feature of the composite is its ability to obtain local heat transfer coefficients and isotherm patterns that provide visual evaluation of the thermal performances of turbine blade cooling configurations. Examples of the use of the composite are presented.


1971 ◽  
Vol 13 (1) ◽  
pp. 1-12 ◽  
Author(s):  
A. B. Turner

This paper presents an experimental method for determining the variation of the local heat transfer coefficient around gas turbine blades. The method involves the accurate determination of the distribution of metal surface temperature and the heat transfer coefficient and air coolant temperature in the internal cooling passages of the blade. It is shown that from the solution of Laplace's equation and a numerical differentiation at the blade surface of the resulting two-dimensional temperature field an estimate can be made of the normal temperature gradient in the metal which can be related directly to the local heat transfer coefficient at any point of the blade periphery. The results of experiments on a cascade blade undertaken to demonstrate the method are presented. These results show a clear laminar–turbulent transition on the convex surface of the blade but no transition, as such, is indicated on the concave surface. The magnitude of turbulence in the main stream is shown to have a very marked effect both on the mean level of heat transfer to the blade and on the local variation of the heat transfer coefficient.


1983 ◽  
Vol 105 (1) ◽  
pp. 184-189 ◽  
Author(s):  
S. A. Hippensteele ◽  
L. M. Russell ◽  
F. S. Stepka

Commercially available elements of a composite consisting of a plastic sheet coated with liquid crystal, another sheet with a thin layer of a conducting material (gold or carbon), and copper bus bar strips were evaluated and found to provide a simple, convenient, accurate, and low-cost measuring device for use in heat transfer research. The particular feature of the composite is its ability to obtain local heat transfer coefficients and isotherm patterns that provide visual evaluation of the thermal performances of turbine blade cooling configurations. Examples of the use of the composite are presented.


1998 ◽  
Vol 120 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Z. Wang ◽  
P. T. Ireland ◽  
S. T. Kohler ◽  
J. W. Chew

The local heat transfer coefficient distribution over all four walls of a large-scale model of a gas turbine cooling passage have been measured in great detail. A new method of determine the heat transfer coefficient to the rib surface has been developed and the contribution of the rib, at 5 percent blockage, to the overall roughened heat transfer coefficient was found to be considerable. The vortex-dominated flow field was interpreted from the detailed form of the measured local heat transfer contours. Computational Fluid Dynamics calculations support this model of the flow and yield friction factors that agree with measured values. Advances in the heat transfer measuring technique and data analysis procedure that confirm the accuracy of the transient method are described in full.


Sign in / Sign up

Export Citation Format

Share Document