Investigation of Tire Rotating Modeling Techniques Using Computational Fluid Dynamics

Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu

Abstract Fuel efficiency becomes very important for new vehicles. Therefore, improving the aerodynamics of tires has started to receive increasing interest. While the experimental approaches are time consuming and costly, numerical methods have been employed to investigate the air flow around tires. Rotating boundary and contact patch are important challenges in the modeling of tire aerodynamics. Therefore, majority of the current modelling approaches are simplified by neglecting the tire deformation and contact patch. In this study, a baseline CFD model is created for a tire with contact patch. To generate mesh efficiently, a hybrid mesh, which combines hex elements and polyhedral elements, is used. Then, three modeling approaches (rotating wall, multiple reference frame and sliding mesh) are compared for the modeling of tire rotation. Additionally, three different tire designs are investigated, including smooth tire, grooved tire and grooved tire with open rim. The predicted results of the baseline model agree well with the measured data. Additionally, the hybrid mesh show to be efficient and to generate accurate results. The CFD model tends to over predict the drag of a rotating tire with contact patch. Sliding mesh approach generated more accurate predictions than the rotating wall and multiple reference frame approaches. For different tire designs, tire with open rim has the highest drag. It is believed that the methodology presented in this study will help in designing new tires with high aerodynamic performance.

Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu

Abstract Fuel efficiency is very important when designing new vehicles. There is a continuous demand for lower fuel cost to customers. Many researchers have started to investigate the aerodynamics of tires. Since the experimental approaches are time consuming and costly, numerical methods have been developed to model the air flow around the tire. One of the challenges for modeling the tire is rotating boundary and contact patch. In the CFD model, both rotating and tire deformation have to be considered to get accurate predictions. However, most of the current methods neglect the tire deformation and contact patch. Therefore, in this study, three modeling approaches are compared for the modeling of tire rotation. They include rotating wall, multiple reference frame and sliding mesh. In CFD simulation, another challenge is mesh generation due to the sharp edge and large curvature around the contact patch. In order to generate mesh efficiently. A hybrid mesh which combines hex elements and polyhedral elements is used in this study. In addition, three different tire designs are investigated, including smooth tire, smooth tire with grooves and grooved tire with open rim. The results show that tire with open rim has the highest drag. Sliding mesh provides the most accurate predictions regarding of aerodynamic drag.


Author(s):  
Yogi Sheoran ◽  
Bruce Bouldin ◽  
P. Murali Krishnan

Inlet swirl distortion has become a major area of concern in the gas turbine engine community. Gas turbine engines are increasingly installed with more complicated and tortuous inlet systems, like those found on embedded installations on Unmanned Aerial Vehicles (UAVs). These inlet systems can produce complex swirl patterns in addition to total pressure distortion. The effect of swirl distortion on engine or compressor performance and operability must be evaluated. The gas turbine community is developing methodologies to measure and characterize swirl distortion. There is a strong need to develop a database containing the impact of a range of swirl distortion patterns on a compressor performance and operability. A recent paper presented by the authors described a versatile swirl distortion generator system that produced a wide range of swirl distortion patterns of a prescribed strength, including bulk swirl, twin swirl and offset swirl. The design of these swirl generators greatly improved the understanding of the formation of swirl. The next step of this process is to understand the effect of swirl on compressor performance. A previously published paper by the authors used parallel compressor analysis to map out different speed lines that resulted from different types of swirl distortion. For the study described in this paper, a computational fluid dynamics (CFD) model is used to couple upstream swirl generator geometry to a single stage of an axial compressor in order to generate a family of compressor speed lines. The complex geometry of the analyzed swirl generators requires that the full 360° compressor be included in the CFD model. A full compressor can be modeled several ways in a CFD analysis, including sliding mesh and frozen rotor techniques. For a single operating condition, a study was conducted using both of these techniques to determine the best method given the large size of the CFD model and the number of data points that needed to be run to generate speed lines. This study compared the CFD results for the undistorted compressor at 100% speed to comparable test data. Results of this study indicated that the frozen rotor approach provided just as accurate results as the sliding mesh but with a greatly reduced cycle time. Once the CFD approach was calibrated, the same techniques were used to determine compressor performance and operability when a full range of swirl distortion patterns were generated by upstream swirl generators. The compressor speed line shift due to co-rotating and counter-rotating bulk swirl resulted in a predictable performance and operability shift. Of particular importance is the compressor performance and operability resulting from an exposure to a set of paired swirl distortions. The CFD generated speed lines follow similar trends to those produced by parallel compressor analysis.


2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


Sign in / Sign up

Export Citation Format

Share Document