Surface integrity and Flank wear response under Pure coconut oil-Al2O3 nano MQL turning of Al-7079/7wt.%-TiC in-situ metal matrix composites

2021 ◽  
pp. 1-21
Author(s):  
Sujith S V ◽  
Rahul Mulik

Abstract Major cooling and lubricating properties such as conduction, convection and lubricant stability at higher temperature are improvised by the addition nano particle into metal cutting fluids. The present investigation is mainly focused into the effects of pure coconut oil (PC) based nano-fluids through minimum quantity lubrication (MQL) on oblique cutting performance of Al-7079/7wt.%-TiC in-situ reinforced metal matrix composites (MMCs). The machining performance has been evaluated under dry machining, pure coconut oil (PC)-MQL and MQL by varying 0.1 % to 0.6 vol. % nano particles into PC. The performance of nano cutting fluids were compared to dry machining and PC machining in terms of cutting forces, tool wear, cutting zone temperature, and surface roughness respectively. It has found that, compared to dry and PC-MQL machining, the performance of nano MQL machining was superior among all cutting conditions. However, above 0.4 % nano particles, the nano MQL performance was degraded drastically which leads to the substantial increment in cutting forces, tool wear, surface roughness and cutting zone temperature respectively.

2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

2019 ◽  
Vol 61 (8) ◽  
pp. 779-786
Author(s):  
Bellamballi Munivenkatappan Muthami Selvan ◽  
Veeramani Anandakrishnan ◽  
Muthukannan Duraiselvam ◽  
Sivaraj Sundarameenakshi

Author(s):  
Anup A Junankar ◽  
Yashpal Yashpal ◽  
Jayant K Purohit

A minimum quantity lubrication system using biodegradable cutting fluids has facilitated the excellent machining performance and is observed as more sustainable. In the view of enhancement of machining performance, the utilization of nanofluids with a minimum quantity lubrication system as a cutting fluid delivered noteworthy outcomes. For the present experimental investigation, the monotype nanofluids (copper oxide and zinc oxide) and a hybrid nanofluid (copper oxide/zinc oxide) were synthesized by using a two-step method. Scanning electron microscopy and energy dispersive X-ray analysis were performed to characterize the synthesized nanoparticles. A vegetable oil was utilized as a base fluid and three types of nanofluids were prepared by the addition of a surfactant (butenol). Also, ultrasonication has been performed to avoid the agglomeration of nanoparticles into the base fluid. The thermal conductivity evaluation of prepared nanofluids was carried out by using a hot wire method. The effects of three nanofluids were investigated by considering three machining input variables (cutting speed, feed rate and depth of cut) on response variables (surface roughness and cutting zone temperature) during bearing steel turning under nanofluid minimum quantity lubrication cooling conditions. The multi-objective optimization was performed by using grey relational analysis and found that the hybrid nanofluid (copper oxide/zinc oxide) was noted as the highly effective cooling condition as equated to copper oxide and zinc oxide monotype nanofluid. The hybrid nanofluid (copper oxide/zinc oxide) shows a 65% and 60% reduction in surface roughness on comparing with copper oxide and zinc oxide nanofluids, respectively. Also, the minimization of cutting zone temperature was observed under the hybrid nanofluid (copper oxide/zinc oxide) by 11% and 13% on equating with copper oxide and zinc oxide nanofluids, respectively.


2018 ◽  
Vol 203 ◽  
pp. 636-647 ◽  
Author(s):  
Xiangyu Teng ◽  
Wanqun Chen ◽  
Dehong Huo ◽  
Islam Shyha ◽  
Chao Lin

2013 ◽  
Vol 837 ◽  
pp. 283-289 ◽  
Author(s):  
Raluca Maria Florea ◽  
Oana Bălţătescu ◽  
Aurelian Buzăianu ◽  
Ioan Carcea

In this paper characteristics of an AlMg/AlN composite produced in-situ and processed in a flowing N2 atmosphere is investigated. Some critical parameters such as the manufacturing process temperature, the percentage of the magnesium consumed, the flowing reactive gas flow and the time for completing the manufacturing are considered as variables for the parametric investigation. Moreover, the effect of different amount of Mg employed has been also investigated, since Mg acts as a catalyst at the surface both for the gas/liquid and solid/liquid systems. Traditional methods were used for the basic characterization of the composite. The microstructure of the composite was investigated by optical and scanning electron microscopy (OM, SEM). SEM analysis was performed in order to observe the microstructural evolution as a function of the Mg content and to identify some reasons of the presence of porosity or any irregularities within the metal matrix. The evolution of mechanical properties, in terms of microhardness, at different percentage of Mg were monitored. By EDS technique the distribution of the elements was obtained. Furthermore, employing an optimization process, uniform dispersion of the strengthening (AlN) particles in the metal matrix with homogeneous properties along the composite material is obtained. Based on the aforementioned statements, it can be concluded that the reactions between Al, Mg and the N2 atmosphere induce spontaneous infiltration in the metal matrix. The complete mix of properties and experimentally assessed parameters can be used for industrial purpose manufacturing design and development.


2018 ◽  
Vol 738 ◽  
pp. 344-352 ◽  
Author(s):  
R. Vasanth Kumar ◽  
R. Keshavamurthy ◽  
Chandra S. Perugu ◽  
Praveennath G. Koppad ◽  
Mohammad Alipour

Sign in / Sign up

Export Citation Format

Share Document