Investigation Techniques of In Situ AlMg/AlN Metal Matrix Composites via Reactive Gas Injection

2013 ◽  
Vol 837 ◽  
pp. 283-289 ◽  
Author(s):  
Raluca Maria Florea ◽  
Oana Bălţătescu ◽  
Aurelian Buzăianu ◽  
Ioan Carcea

In this paper characteristics of an AlMg/AlN composite produced in-situ and processed in a flowing N2 atmosphere is investigated. Some critical parameters such as the manufacturing process temperature, the percentage of the magnesium consumed, the flowing reactive gas flow and the time for completing the manufacturing are considered as variables for the parametric investigation. Moreover, the effect of different amount of Mg employed has been also investigated, since Mg acts as a catalyst at the surface both for the gas/liquid and solid/liquid systems. Traditional methods were used for the basic characterization of the composite. The microstructure of the composite was investigated by optical and scanning electron microscopy (OM, SEM). SEM analysis was performed in order to observe the microstructural evolution as a function of the Mg content and to identify some reasons of the presence of porosity or any irregularities within the metal matrix. The evolution of mechanical properties, in terms of microhardness, at different percentage of Mg were monitored. By EDS technique the distribution of the elements was obtained. Furthermore, employing an optimization process, uniform dispersion of the strengthening (AlN) particles in the metal matrix with homogeneous properties along the composite material is obtained. Based on the aforementioned statements, it can be concluded that the reactions between Al, Mg and the N2 atmosphere induce spontaneous infiltration in the metal matrix. The complete mix of properties and experimentally assessed parameters can be used for industrial purpose manufacturing design and development.

2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

2019 ◽  
Vol 61 (8) ◽  
pp. 779-786
Author(s):  
Bellamballi Munivenkatappan Muthami Selvan ◽  
Veeramani Anandakrishnan ◽  
Muthukannan Duraiselvam ◽  
Sivaraj Sundarameenakshi

2015 ◽  
Vol 766-767 ◽  
pp. 269-275 ◽  
Author(s):  
G. Saravanan ◽  
K. Shanmugasundaram ◽  
M. Prakash ◽  
A. Velayudham

The tribological behaviour of hybrid aluminium matrix composites (AMCs) A356 reinforced with SiC , Gr and Tin particulate, fabricated by powder metallurgy route. In this experimental study, the mechanical and tribological properties are investigated. The results show that addition of more reinforcements reduce the hardness and also increase the wear rate of the composites. The addition of Gr beyond certain limit will decrease hardness and that of SiC will increase brittleness. In the hybrid composite with 15% weight SiC and 5% weight Gr reinforcement results show that great improvement under tribological condition. The wear loss of the hybrid composites decreased with increasing applied load and sliding distance. The SEM analysis shows the wear tracks results of the composite materials.


2018 ◽  
Vol 738 ◽  
pp. 344-352 ◽  
Author(s):  
R. Vasanth Kumar ◽  
R. Keshavamurthy ◽  
Chandra S. Perugu ◽  
Praveennath G. Koppad ◽  
Mohammad Alipour

2021 ◽  
Vol 87 (5) ◽  
pp. 34-42
Author(s):  
N. B. Podymova ◽  
I. E. Kalashnikov ◽  
L. I. Kobeleva

One of the most critical manufacturing defects of cast metal-matrix composites is a non-uniform porosity distribution over the composite volume. Unevenness of the distribution leads not only to local softening, but also plays a key role in the evolution of the damage process under the external loads. The goal of the study is to apply a new laser-ultrasonic method to in-situ study of a local porosity in reactive cast aluminum-matrix composites. The proposed method is based on statistical analysis of the amplitude distribution of backscattered broadband pulses of longitudinal ultrasonic waves in the studied materials. Laser excitation and piezoelectric detection of ultrasound were carried out using a laser-ultrasonic transducer. Two series of reactive cast aluminum-matrix composites were analyzed: reinforced by in situ synthesized Al3Ti intermetallic particles in different volume concentrations and by Al3Ti added with synthetic diamond nanoparticles. It is shown that for both series of the composites, the amplitude distribution of backscattered ultrasonic pulses is approximated by the Gaussian probability distribution applicable for statistics of large number of independent random variables. The empirical dependence of the half-width of this distribution on the local porosity in composites of two series is approximated by the same nearly linear function regardless of the size and fraction of reinforcing particles. This function was used to derive the formula for calculation of the local porosity in the studied composites. The developed technique seems to be promising in revealing potentially dangerous domains with high porosity in reactive-cast metal-matrix composites.


2021 ◽  
pp. 1-21
Author(s):  
Sujith S V ◽  
Rahul Mulik

Abstract Major cooling and lubricating properties such as conduction, convection and lubricant stability at higher temperature are improvised by the addition nano particle into metal cutting fluids. The present investigation is mainly focused into the effects of pure coconut oil (PC) based nano-fluids through minimum quantity lubrication (MQL) on oblique cutting performance of Al-7079/7wt.%-TiC in-situ reinforced metal matrix composites (MMCs). The machining performance has been evaluated under dry machining, pure coconut oil (PC)-MQL and MQL by varying 0.1 % to 0.6 vol. % nano particles into PC. The performance of nano cutting fluids were compared to dry machining and PC machining in terms of cutting forces, tool wear, cutting zone temperature, and surface roughness respectively. It has found that, compared to dry and PC-MQL machining, the performance of nano MQL machining was superior among all cutting conditions. However, above 0.4 % nano particles, the nano MQL performance was degraded drastically which leads to the substantial increment in cutting forces, tool wear, surface roughness and cutting zone temperature respectively.


Sign in / Sign up

Export Citation Format

Share Document