Experimental Investigation of the Effect of Heat Spreading on Boiling of a Dielectric Liquid for Immersion Cooling of Electronics

Author(s):  
Omidreza Ghaffari ◽  
Wei Tong ◽  
Yaser Nabavi Larimi ◽  
Chady Alsayed ◽  
Alireza Ganjali ◽  
...  

Abstract This paper investigated the effect of heat spreading on the boiling of the Novec 649TM for two-phase immersion cooling of electronics. Reference pool boiling tests were performed by attaching a 25.4 by 25.4 mm square plate square copper plate to a same-sized heater, thus minimizing lateral heat spreading. Experimental measurements showed that the critical heat flux (CHF) happened at a heat flux of 17.4 ±0.8 W/cm2. Then, lateral heat spreading through the heat spreader was studied by attaching larger (47 mm by 47mm) spreaders with four different thicknesses to the copper plate. With an increase in the integrated heat spreader (IHS) thickness from 1 mm to 6 mm, the CHF increased by more than 60% at the saturation condition. One plate was a 1 mm-thick IHS removed from a commercial microprocessor. In this case, the CHF happens at 8.6 W/cm2 (50% lower compared to the reference case) in the saturation condition. At CHF, the boiling can be observed on the whole surface, with columns and slugs regime at the center and the fully developed nucleate boiling regime at the edges. This non-uniform boiling was more pronounced in sub-cooled conditions, in which the CHF occurred at the center while there were regions at the edges that had no boiling. Finally, the performance of a micro porous-coated IHS (with 3.15 mm thickness) was compared to the 6mm thick IHS. The thermal resistance was almost equal for powers above 200 W. This indicates that lateral heat spreading is a critical parameter for the thermal design of immersion cooling along with micro-porous coating.

Author(s):  
Wei Tong ◽  
Alireza Ganjali ◽  
Omidreza Ghaffari ◽  
Chady Alsayed ◽  
Luc Frechette ◽  
...  

Abstract In a two-phase immersion cooling system, boiling on the spreader surface has been experimentally found to be non-uniform, and it is highly related to the surface temperature and the heat transfer coefficient. An experimentally obtained temperature-dependent boiling heat transfer coefficient has been applied to a numerical model to investigate the spreader's cooling performance. It is found that the surface temperature distribution becomes less uniform with higher input power. But it is more uniform when the thickness is increased. By defining the characteristic temperatures that represent different boiling regimes on the surface, the fraction of the surface area that has reached the critical heat flux has been numerically calculated, showing that increasing the thickness from 1 mm to 6 mm decreases the critical heat flux reached area by 23% at saturation liquid temperatures. Therefore, on the thicker spreader, more of the surface is utilized for nucleate boiling while localized hot regions that lead to surface dry-out are avoided. At a base temperature of 90 oC, the optimal thickness is found to be 4 mm, beyond which no significant improvement in heat removal can be obtained. Lower coolant temperatures can further increase the heat removal; it is reduced from an 18% improvement in the input power for the 1 mm case to only 3% in the 6 mm case for a coolant temperature drop of 24 oC. Therefore, a trade-off exists between the cost of maintaining the low liquid temperature and the increased heat removal capacity.


2000 ◽  
Vol 123 (2) ◽  
pp. 257-270 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Tsung-Ying Yang

Pool nucleate boiling heat transfer experiments from coated surfaces with porous copper (Cu) and molybdenum (Mo) and spirally wrapped with helical wire on copper surfaces with micro-roughness immersed in saturated R-134a and R-600a were conducted. The influence of coating thickness, porosity, wrapped helical angle, and wire pitch on heat transfer and boiling characteristics including bubble parameters were studied. The enhanced surface heat transfer coefficients with R-600a as refrigerant found are 2.4 times higher than those of the smooth surfaces. Photographs indicate that the average number of bubbles and bubble departure diameters has been found to increase linearly with heat flux, while the bubble diameters exhibit opposite trend in both refrigerants. Furthermore, the heat transfer of the boiling process for the present enhanced geometry (coated and wrapped) was modeled and analyzed. The experimental data for plasma coating and spirally wrapped surfaces were correlated in terms of relevant parameters, respectively to provide a thermal design basis for engineering applications.


2006 ◽  
Vol 129 (2) ◽  
pp. 114-123
Author(s):  
Chen-li Sun ◽  
Van P. Carey

In this study, boiling experiments were conducted with 2-propanol/water mixtures in confined gap geometry under various levels of gravity. The temperature field created within the parallel plate gap resulted in evaporation over the portion of the vapor-liquid interface of the bubble near the heated surface, and condensation near the cold surface. Full boiling curves were obtained and two boiling regimes—nucleate boiling and pseudofilm boiling—and the transition condition, the critical heat flux (CHF), were identified. The observations indicated that the presence of the gap geometry pushed the nucleate boiling regime to a lower superheated temperature range, resulting in correspondingly lower heat flux. With further increases of wall superheat, the vapor generated by the boiling process was trapped in the gap to blanket the heated surface. This caused premature occurrence of CHF conditions and deterioration of heat transfer in the pseudo-film boiling regime. The influence of the confined space was particularly significant when greater Marangoni forces were present under reduced gravity conditions. The CHF value of x (molar fraction)=0.025, which corresponded to weaker Marangoni forces, was found to be greater than that of x=0.015 with a 6.4mm gap.


1998 ◽  
Vol 120 (3) ◽  
pp. 641-653 ◽  
Author(s):  
G. F. Naterer ◽  
W. Hendradjit ◽  
K. J. Ahn ◽  
J. E. S. Venart

Boiling heat transfer from inclined surfaces is examined and an analytical model of bubble growth and nucleate boiling is presented. The model predicts the average heat flux during nucleate boiling by considering alternating near-wall liquid and vapor periods. It expresses the heat flux in terms of the bubble departure diameter, frequency and duration of contact with the heating surface. Experiments were conducted over a wide range of upward and downward-facing surface orientations and the results were compared to model predictions. More active microlayer agitation and mixing along the surface as well as more frequent bubble sweeps along the heating surface provide the key reasons for more effective heat transfer with downward facing surfaces as compared to upward facing cases. Additional aspects of the role of surface inclination on boiling dynamics are quantified and discussed.


Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


Author(s):  
Jimmy Chuang ◽  
Jin Yang ◽  
David Shia ◽  
Y L Li

Abstract In order to meet increasing performance demand from high-performance computing (HPC) and edge computing, thermal design power (TDP) of CPU and GPU needs to increase. This creates thermal challenge to corresponding electronic packages with respect to heat dissipation. In order to address this challenge, two-phase immersion cooling is gaining attention as its primary mode of heat of removal is via liquid-to-vapor phase change, which can occur at relatively low and constant temperatures. In this paper, integrated heat spreader (IHS) with boiling enhancement features is proposed. 3D metal printing and metal injection molding (MIM) are the two approaches used to manufacture the new IHS. The resultant IHS with enhancement features are used to build test vehicles (TV) by following standard electronic package assembly process. Experimental results demonstrated that boiling enhanced TVs improved two-phase immersion cooling capability by over 50% as compared to baseline TV without boiling enhanced features.


1999 ◽  
Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Manabu Mochizuki

Abstract The effect of solid particle introduction on subcooled-forced flow boiling heat transfer and a critical heat flux was examined experimentally. In the experiment, glass beads of 0.6 mm diameter were mixed in subcooled water. Experiments were conducted in a range of the subcooling of 40 K, a velocity of 0.17–6.7 m/s, a volumetric particle ratio of 0–17%. When particles were introduced, the growth of a superheated liquid layer near a heat trasnsfer surface seemed to be suppressed and the onset of nucleate boiling was delayed. The particles promoted the condensation of bubbles on the heat transfer surface, which shifted the initiation of a net vapor generation to a high heat flux region. Boiling heat trasnfer was augmented by the particle introduction. The suppression of the growth of the superheated liquid layer and the promotion of bubble condensation and dissipation by the particles seemed to contribute that heat transfer augmentation. The wall superheat at the critical heat flux was elevated by the particle introduction and the critical heat flux itself was also enhanced. However, the degree of the critical heat flux improvement was not drastic.


Sign in / Sign up

Export Citation Format

Share Document