Effects of Gap Geometry and Gravity on Boiling Around a Constrained Bubble in 2-Propanol/Water Mixtures

2006 ◽  
Vol 129 (2) ◽  
pp. 114-123
Author(s):  
Chen-li Sun ◽  
Van P. Carey

In this study, boiling experiments were conducted with 2-propanol/water mixtures in confined gap geometry under various levels of gravity. The temperature field created within the parallel plate gap resulted in evaporation over the portion of the vapor-liquid interface of the bubble near the heated surface, and condensation near the cold surface. Full boiling curves were obtained and two boiling regimes—nucleate boiling and pseudofilm boiling—and the transition condition, the critical heat flux (CHF), were identified. The observations indicated that the presence of the gap geometry pushed the nucleate boiling regime to a lower superheated temperature range, resulting in correspondingly lower heat flux. With further increases of wall superheat, the vapor generated by the boiling process was trapped in the gap to blanket the heated surface. This caused premature occurrence of CHF conditions and deterioration of heat transfer in the pseudo-film boiling regime. The influence of the confined space was particularly significant when greater Marangoni forces were present under reduced gravity conditions. The CHF value of x (molar fraction)=0.025, which corresponded to weaker Marangoni forces, was found to be greater than that of x=0.015 with a 6.4mm gap.

Author(s):  
Chen-Li Sun ◽  
Van P. Carey

In this study, boiling experiments were conducted with 2-propanol/water mixtures in confined gap geometry under various levels of gravity. The temperature field created within the parallel plate gap resulted in evaporation over the portion of the vapor-liquid interface of the bubble near the heated surface, and condensation near the cold surface. Full boiling curves were obtained and two boiling regimes — nucleate boiling and pseudo film boiling, the transition condition, and the critical heat flux (CHF), were identified. The observations indicate that the presence of the gap geometry pushed the nucleate boiling regime to a lower superheated temperature range and resulted in correspondingly lower heat flux. With further increases of wall superheat, the vapor generated by the boiling process was trapped in the gap and blanketed the heated surface. This caused premature occurrence of CHF conditions and deterioration of heat transfer in the pseudo film boiling regime. The influence of the confined space was particularly significant when greater Marangoni forces were present at reduced gravity conditions. The value of the CHF for x = 0.025, which corresponded to weaker Marangoni forces, was found to be greater than that of x = 0.015 with a 6.35 mm gap.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Hyungdae Kim ◽  
Ho Seon Ahn ◽  
Moo Hwan Kim

The pool boiling characteristics of water-based nanofluids with alumina and titania nanoparticles of 0.01 vol % were investigated on a thermally heated disk heater at saturated temperature and atmospheric pressure. The results confirmed the findings of previous studies that nanofluids can significantly enhance the critical heat flux (CHF), resulting in a large increase in the wall superheat. It was found that some nanoparticles deposit on the heater surface during nucleate boiling, and the surface modification due to the deposition results in the same magnitude of CHF enhancement in pure water as for nanofluids. Subsequent to the boiling experiments, the interfacial properties of the heater surfaces were examined using dynamic wetting of an evaporating water droplet. As the surface temperature increased, the evaporating meniscus on the clean surface suddenly receded toward the liquid due to the evaporation recoil force on the liquid-vapor interface, but the nanoparticle-fouled surface exhibited stable wetting of the liquid meniscus even at a remarkably higher wall superheat. The heat flux gain attainable due to the improved wetting of the evaporating meniscus on the fouled surface showed good agreement with the CHF enhancement during nanofluid boiling. It is supposed that the nanoparticle layer increases the stability of the evaporating microlayer underneath a bubble growing on a heated surface and thus the irreversible growth of a hot/dry spot is inhibited even at a high wall superheat, resulting in the CHF enhancement observed when boiling nanofluids.


Author(s):  
Tomio Okawa ◽  
Takahito Kamiya

It is known that dispersion of a small amount of nanometer-sized particles in liquid can cause substantial improvement of the critical heat flux in pool boiling. Nanofluids (colloidal suspensions of nanoparticles in a base fluid) may therefore be used as the coolant in industrial applications in which high-heat-flux removal is needed. If it is supposed that the deposition of nanoparticles onto the heated surface during nucleate boiling is the main cause of the CHF enhancement in nanofluids, a certain time period is considered to be necessary for the CHF to be improved. In view of this, preliminary experiments were performed in the present work to investigate the time scale of CHF improvement; here, distilled water was used as a base fluid, and TiO2 and copper were selected as the materials of nanoparticles and heated surface, respectively. Under a particular experimental conditions of nanoparticle concentration and nucleate boiling heat flux (40 mg/l and 500 kW/m2), an approximate time scale of CHF improvement was 10 min; this value might not be negligibly short in some nanofluid applications. The measured time-variations of the wall superheat during the nucleate boiling in nanofluid suggested that longer time periods are required for the CHF enhancement at lower heat fluxes and lower nanoparticle concentrations. In particular, 40 min was not sufficient for the wall superheat to reach a steady-state value at the lowest nanoparticle concentration of tested in this work (9 mg/l).


2000 ◽  
Author(s):  
E. Cabrera ◽  
J. E. Gonzalez

Abstract In this work an experimental study of spray cooling using monodispersed droplet sprays impinging on a flat and heated surface is reported. The aim of the work was to formulate an empirical model describing the heat flux (HF) for the nucleate boiling regime. Monodispersed water droplets with a known diameter and velocity, produced by a droplet generator, were directed toward a heated surface and the heat transfer was registered using a data acquisition system. The resulting high heat flux was investigated as function of the droplets’ diameter and velocity, mass flow rate, ambient pressure, subcooling degree and surface roughness. The resulting matrix of variables investigated in the experiments included; mass flux rate (340 < ṁ″ < 750 kg/m2s), subcooling degree (25 < Tsub < 78 °C), ambient pressure (1 < P < 1.8 bar), and surface roughness (79 < Rt < 5 μm). A generalized correlation was developed for the dimensionless HF as function of the dimensionless mass flow rate, temperature, surface roughness and pressure, along with the Jacob number. The form of the correlation is q ˙ ″ ρ V h f g = 0.245 ( Ja ) 1.038 ( Δ T sub Δ T sat ) 0.491 ( ρ σ m ˙ μ 3 ) 0.133 ( R t D ) 0.0213 ( P P 0 ) 0.291 having a confidence level greater than 95%, the differences between predicted and experimental HF were less than ±19%.


Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


2005 ◽  
Author(s):  
X. D. Wang ◽  
G. Lu ◽  
X. F. Peng ◽  
B. X. Wang

A visual study was conducted to investigate the evaporation and nucleate boiling of a water droplet on heated copper, aluminum, or stainless surfaces with temperature ranging from 50°C to 112°C. Using a high-speed video imaging system, the dynamical process of the evaporation of a droplet was recoded to measure the transient variation of its diameter, height, and contact angle. When the contact temperature was lower than the saturation temperature, the evaporation was in film evaporation regime, and the evaporation could be divided into two stages. When the surface temperature was higher than the saturation temperature, the nucleate boiling was observed. The dynamical behavior of nucleation, bubble dynamics droplet were detail observed and discussed. The linear relationships of the average heat flux vs. temperature of the heated surfaces were found to hold for both the film evaporation regime and nucleate boiling regime. The different slopes indicated their heat transfer mechanism was distinct, the heat flux decreased in the nucleate boiling regime more rapidly than in the film evaporation due to the strong interaction between the bubbles.


Author(s):  
Bambang Joko Suroto ◽  
Masahiro Tashiro ◽  
Sana Hirabayashi ◽  
Sumitomo Hidaka ◽  
Masamichi Kohno ◽  
...  

The effects of hydrophobic circle spot size and subcooling on local film boiling phenomenon from the copper surface with single PTFE (Polytetrafluoroethylene) hydrophobic circle spot at low heat flux has been investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0 and 10K. The heat transfer surfaces are used polished copper block with single PTFE hydrophobic circle spot of diameters 2, 4 and 6 mm, respectively. A high-speed camera was used to capture bubble dynamics and disclosed the sequence of the process leading to local film boiling. The result shows that local films boiling occurs on the PTFE circle spot at low heat flux and was triggered by the merging of neighboring bubbles. The study also showed that transition time required for change from nucleate boiling regime to local film boiling regime depends on the diameter of the hydrophobic circle spot and the subcooling. A stable local film boiling occurs at the smallest diameter of hydrophobic spot. Subcooling cause the local film boiling occur at negative superheat and oscillation of bubble dome.


Author(s):  
Ichiro Ueno ◽  
Yasusuke Hattori

‘Microbubble emission boiling,’ known as MEB, is a phenomenon that emerges in a narrow range of subcooled condition with a higher heat flux than critical heat flux (CHF) accompanying with microbubble emission from the heated surface. The authors focus on the condensing process of vapor bubbles in order to comprehend the mechanism of the microbubble formation and emitting processes. In order to simplify a surely complex boiling process, the authors try to extract an interaction between the vapor bubble and the subcooled bulk in a boiling phenomenon, that is, growing and collapsing processes of a vapor bubble ejected to subcooled liquid bath. Vapor bubble is produced by vapor generate system, and ejected to a bulk of saturated distilled water at a designated degree of subcooling. The degree of subcooling is varied from 0 to 50 K. The growing/collapsing of vapor bubble behavior is detected by employing a high-speed camera at frame rates up to 50,000 fps with a back-lighting system. In the present study, the process of microbubble emission as well as the process of the irrupting vapor bubbles to the subcooled bulk is compared to that in a MEB on a thin wire.


1995 ◽  
Vol 117 (2) ◽  
pp. 394-401 ◽  
Author(s):  
J. H. Lay ◽  
V. K. Dhir

The transport processes occurring in an evaporating two-dimensional vapor stem formed during saturated nucleate boiling on a heated surface are modeled and analyzed numerically. From the heater surface heat is conducted into the liquid macro/microthermal layer surrounding the vapor stems and is utilized in evaporation at the stationary liquid–vapor interface. A balance between forces due to curvature of the interface, disjoining pressure, hydrostatic head, and liquid drag determines the shape of the interface. The kinetic theory and the extended Clausius–Clapeyron equation are used to calculate the evaporative heat flux across the liquid–vapor interface. The vapor stem shape calculated by solving a fourth-order nonlinear ordinary differential equation resembles a cup with a flat bottom. For a given wall superheat, several metastable states of the vapor stem between a minimum and maximum diameter are found to be possible. The effect of wall superheat on the shape of the vapor stem is parametrically analyzed and compared with limited data reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document