A numerical study of particle migration in porous media during produced water reinjection

2021 ◽  
pp. 1-34
Author(s):  
Tian Xia ◽  
Qihong Feng ◽  
Sen Wang ◽  
Qinglin Shu ◽  
Yigen Zhang ◽  
...  

Abstract The clogging phenomenon often occurs during the reinjection of produced water due to the suspended particles, which will deteriorate the development efficiency. Many experimental and analytical methods have been introduced to solve this problem; however, few numerical approaches have been proposed to investigate the particle migration in the produced water reinjection process. Moreover, it is hard to obtain a clear understanding directly from the particle scale when the injected particles have different sizes. This paper employs a coupled lattice Boltzmann method and discrete element method (LBM-DEM) to study the aforementioned process. The method was validated by reproducing the Drafting-Kissing-Tumbling (DKT) process. Simulations of migration of injected particles with different sizes through porous media were conducted and three clogging scenarios had been identified. We investigated the impact of injected particle size distribution and porous media on particle migration and concluded the results in the polydisperse aspect. From the simulation, we can conclude that mix clogging is the scenario we should try to avoid. Besides, both critical ratio of particle diameter of porous media to median particle diameter of injected particles (D/d50) and critical standard deviation value exist. The particle size range should be as small as possible in economical limits and the D/d50 value should be larger than the critical value. Our results can provide a good guide for the produced water pretreatment, which can improve oil recovery.

2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


Author(s):  
Wojciech Sobieski

AbstractThe paper describes the so-called Waterfall Algorithm, which may be used to calculate a set of parameters characterising the spatial structure of granular porous media, such as shift ratio, collision density ratio, consolidation ratio, path length and minimum tortuosity. The study is performed for 1800 different two-dimensional random pore structures. In each geometry, 100 individual paths are calculated. The impact of porosity and the particle size on the above-mentioned parameters is investigated. It was stated in the paper, that the minimum tortuosity calculated by the Waterfall Algorithm cannot be used directly as a representative tortuosity of pore channels in the Kozeny or the Carman meaning. However, it may be used indirect by making the assumption that a unambiguous relationship between the representative tortuosity and the minimum tortuosity exists. It was also stated, that the new parameters defined in the present study are sensitive on the porosity and the particle size and may be therefore applied as indicators of the geometry structure of granular media. The Waterfall Algorithm is compared with other methods of determining the tortuosity: A-Star Algorithm, Path Searching Algorithm, Random Walk technique, Path Tracking Method and the methodology of calculating the hydraulic tortuosity based on the Lattice Boltzmann Method. A very short calculation time is the main advantage of the Waterfall Algorithm, what meant, that it may be applied in a very large granular porous media.


Author(s):  
Qichen Zhang ◽  
Xiaodong Kang ◽  
Huiqing Liu ◽  
Xiaohu Dong ◽  
Jian Wang

AbstractCurrently, the reservoir heterogeneity is a serious challenge for developing oil sands with SAGD method. Nexen’s Long Lake SAGD project reported that breccia interlayer was widely distributed in lower and middle part of reservoir, impeding the steam chamber expansion and heated oil drainage. In this paper, two physical experiments were conducted to study the impact of breccia interlayer on development of steam chamber and production performance. Then, a laboratory scale numerical simulation model was established and a history match was conducted based on the 3D experimental results. Finally, the sensitivity analysis of thickness and permeability of breccia layer was performed. The influence mechanism of breccia layer on SAGD performance was analyzed by comparing the temperature profile of steam chamber and production dynamics. The experimental results indicate that the existence of breccia interlayer causes a thinner steam chamber profile and longer time to reach the peak oil rate. And, the ultimate oil recovery reduced 15.8% due to much oil stuck in breccia interlayer areas. The numerical simulation results show that a lower permeability in breccia layer area has a serious adverse impact on oil recovery if the thickness of breccia layer is larger, whereas the effect of permeability on SAGD performance is limited when the breccia layer is thinner. Besides, a thicker breccia layer can increase the time required to reach the peak oil rate, but has a little impact on the ultimate oil recovery.


2008 ◽  
Vol 48 (1) ◽  
pp. 21
Author(s):  
Changhong Gao

Capture of emulsion droplets in porous media can be costly or beneficial. When produced water is injected into reservoir for pressure maintenance, the oil droplets in produced water can plug reservoir rocks and cause the well to lose injectivity. Enhanced oil recovery (EOR) technology takes advantage of this feature and plugs high-injectivity zones with emulsions. Previous studies reveal that interception and straining are the mechanisms of permeability decline. Established models rely on filtration data to determine key parameters. In this work, a network model is proposed to simulate capture of oil droplets in reservoir rocks and resultant permeability reduction. The model is validated with test data and reasonably good results are obtained. The simulation also reveals that the wettability of the tested porous media was altered by injection of emulsions. The new approach considers the characteristics of the porous media and incorporates the damage mechanisms, thus providing more scientific insights into the flow and capture of droplets in porous media.


SPE Journal ◽  
2012 ◽  
Vol 17 (02) ◽  
pp. 469-484 ◽  
Author(s):  
Lingli Wei

Summary Many waterflood projects now experience significant amounts of water cut, with more water than hydrocarbon flowing between the injectors and producers. In addition to the impact on water viscosity and density that results from using different injection-water sources during a field's life, water chemistry itself may impact oil recovery, as demonstrated by recent research on low-salinity water-injection schemes. It is also known that water chemistry has a profound impact on various chemical enhanced-oil-recovery (EOR) processes. Moreover, the effectiveness and viability of such EOR schemes is strongly dependent on reservoir-brine and injection-water compositions. In particular, the presence of divalent cations such as Ca+2 and Mg+2 has a significantly adverse effect for chemical EORs. Using new developments in reservoir simulation, this paper outlines a method to couple geochemical reactions in a reservoir simulator in black-oil and compositional modes suitable for large-scale reservoir models for waterflood and EOR studies. The new multicomponent reactive-transport modeling capability considers chemical reactions triggered by injection water and/or injected reactive gases such as CO2 and H2S, including mineral dissolution and precipitation, cation exchange, and surface complexation. For waterflood-performance assessment, the new modeling capability makes possible a more-optimum evaluation of petrophysical logs for well intervals where injection-water invasion is suspected. By modeling transport of individual species in the aqueous phase from injectors to producers, reservoir characterization can also be improved through the use of these natural tracers, provided that the compositions of the actual produced water are used in the history matching. The simulated water compositions in producers can also be used by production chemists to assess scaling and corrosion risks. For CO2 EOR studies, we illustrate chemical changes inside a reservoir and in the produced water before and after CO2 breakthrough, and discuss geochemical monitoring as a potential surveillance tool. Alkaline-flood-induced water chemical changes and calcite precipitation are also presented to illustrate applicability for chemical EOR with the new simulation capability.


1975 ◽  
Vol 15 (04) ◽  
pp. 323-337 ◽  
Author(s):  
M.T. Szabo

Abstract Numerous single-phase flow and oil-recovery tests were carried out in unconsolidated sands and Berea sandstone cores using C14-tagged, hydrolyzed polyacrylamide solutions. The polymer-retention polyacrylamide solutions. The polymer-retention data from these flow tests are compared with data obtained from static adsorption tests. Polymer concentrations in produced water in Polymer-flooding tests were studied using various Polymer-flooding tests were studied using various polymer concentrations, slug sizes, salt polymer concentrations, slug sizes, salt concentrations, and different permeability sands. Results show that polymer retention by mechanical entrapment had a dominant role in determining the total polymer retention in short sand packs. However, the role of mechanical entrapment was less in the large-surface-area Berea cores. In oil-recovery tests, high polymer concentrations were noted at water breakthrough in sand-pack experiments, an indication that the irreducible water was not displaced effectively ahead of the polymer slug. However, in similar tests with Berea cores, a denuded zone developed at the leading edge of the polymer slug. polymer slug. The existence of inaccessible pore volume to polymer flow is shown both in sand packs and in polymer flow is shown both in sand packs and in sandstone cores. Absolute polymer-retention values show an almost linear dependency on polymer concentration. The effect of polymer slug size on absolute polymer retention is also discussed. Distribution of retained polymer in sand packs showed an exponential decline with distance. The "dynamic polymer-retention" values in short sand packs showed much higher vales than the ‘static packs showed much higher vales than the’ static polymer-adsorption" values caused by mechanical polymer-adsorption" values caused by mechanical entrapment. The mechanism of polymer retention in silica sands and sandstones is described, based on the observed phenomenon. Introduction It is widely recognized that, as polymer solution flows in a porous medium, a portion of the polymer is retained. It is evident that both physical adsorption and mechanical entrapment contribute to polymer retention. The question of the relative importance of these retention mechanisms has not been studied adequately. The effect of residual oil saturation on polymer retention and the polymer retention during the displacement of oil from porous media has also been studied inadequately. Mungen et al. have reported a few data on polymer concentration in produced water in oil-recovery tests. However, no produced water in oil-recovery tests. However, no comparison was made between polymer retention at 100-percent water saturation and at partial oil saturation. It has been shown that the actual size of the flowing polymer molecules, with the associated water, can approach the dimensions of certain smaller pores found in porous media. Therefore, an inaccessible pore volume exists in which no polymer flow occurs. In this study, the existence polymer flow occurs. In this study, the existence of inaccessible pore volume is shown clearly, both in sand and sandstone. Although polymer-retention values have been reported for various conditions, correlation is difficult because of the differing conditions of measurements. The effect of slug size, polymer concentration, salinity, and type of porous media on polymer retention has not been systematically studied. The purpose of this study was to develop answers to these questions, rather than to provide adsorption data for actual field core samples. For this reason, unconsolidated silica sands were used in most of the experiments reported. This permitted identical, uniform single-layer and multilayer porous media to be constructed for repeated experiments under varying test conditions. Some experiments were also carried out in Berea sandstone cores to determine whether sand-pack results can be extrapolated to consolidated sandstones. Using a C 14-tagged polymer provided a very rapid, simple, and accurate polymer-concentration determination technique. SPEJ P. 323


Author(s):  
Qian Li ◽  
Weihua Cai ◽  
Xiaojing Tang ◽  
Yicheng Chen ◽  
Bingxi Li ◽  
...  

Purpose The aim of this study is to numerically simulate the density-driven convection in heterogeneous porous media associated with anisotropic permeability field, which is important to the safe and stable long term CO2 storage in laminar saline aquifers. Design/methodology/approach The study uses compact finite difference and the pseudospectral method to solve Darcy’s law. Findings The presence of heterogeneous anisotropy may result in non-monotonic trend of the breakthrough time and quantity of CO2 dissolved in the porous medium, which are important to the CO2 underground storage. Originality/value The manuscript numerically study the convective phenomena of mixture contained CO2 and brine. The phenomena are important to the process of CO2 enhanced oil recovery. Interesting qualitative patterns and quantitative trends are revealed in the manuscript.


Author(s):  
Juan Di ◽  
Shun-sen Wang ◽  
Liu-xi Cai ◽  
Shang-fang Cheng ◽  
Chuang Wu

Impingement on blade surface by fine particles with high velocity is commonly seen in steam turbines, gas turbines and compressors, which affect the service life and reliability of the equipment. Study on particles’ rebound characteristics is of great significance to reduce the blade erosion and to control particle trajectory. Based on the nonlinear explicit dynamics analysis software ANSYS/LS-DYNA, the impacts of fine spherical particles with different diameters (20 to 500μm) on a typical martensitic stainless steel (AISI 403) target with high velocity (50 to 250m/s) have been systematically studied. The influences of incident velocities, impact angles, particles sizes on its rebound characteristics, relative impact depth, and relative dissipated energy have been analyzed. Results show that velocity restitution coefficient e decreased with the impact angle β1, the incident velocity V1, and the particle size dp. However, the role of particle size on the velocity restitution coefficient seemed to be far less than that of the other two factors. Both of particle’s tangential and normal velocity coefficient of restitution declined with the increasing impact angle in most cases. However, when the incident velocity V1 = 200m / s and the impact angle β1 > 45°, the tangential velocity restitution coefficient et of 100 μm and 200 μm particles increased with the increase in the impact angle β1. The reason might be that the relative impact depth drel was located a zone ranged from 0.1515 to 0.1677, where the tangential rebound behavior could be enhanced. Most of the variation of the tangential and normal velocity restitution coefficient along β1 decreased with the increase in the particle diameter. However, when V1 = 200m/s and β1 > 15°, the tangential reflected velocity of the larger particles was enhanced gradually. In addition, the values of the relative impact depth drel increased with the increasing impact angle and incident velocity, and it increased with the increasing particle diameter in most cases. The relative dissipated energy of particles steadily increased with the impact angle and incident velocity, respectively. Particle diameter had little effect on energy dissipation in comparison with the impact angle and incident velocity.


2015 ◽  
Vol 8 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Junjian Li ◽  
Hanqiao Jiang ◽  
Qun Yu ◽  
Fan Liu ◽  
Hongxia Liu

Polymer flood gains expansive popularity as a promising EOR method in various oilfields worldwide. However, there are still substantial amount of resources underground after polymer application. To further enhance oil recovery, secondary chemicals are sometimes utilized to sweep the remaining hydrocarbons to maintain the consistent development of oilfields. In this paper, a series of experiments are established and conducted to explore the feasibility of surfactant/ polymer flooding applied to a polymer flooded reservoir, and also the influence of polymer retention in porous media to enhance the oil recovery performance of subsequent chemical drive. The data of the experiments suggest that surfactant/polymer flooding owns a very good potential as a subsequent EOR technique, and that polymer retention in pores helps block underground water channels, improving greatly the sweeping efficiency of secondary chemical flood.


2017 ◽  
Vol 9 (3) ◽  
pp. 127-143 ◽  
Author(s):  
M Jalal Ahammad ◽  
Jahrul M Alam

The multiphase flow mechanism in miscible displacement through porous media is an important topic in various applications, such as petroleum engineering, low Reynolds number suspension flows, dusty gas dynamics, and fluidized beds. To simulate such flows, volume averaging spatial operators are considered to incorporate pressure drag and skin friction experienced by a porous medium. In this work, a streamline-based Lagrangian methodology is extended for an efficient numerical approach to handle dispersion and diffusion of solvent saturation during a miscible flow. Overall pressure drag on the diffusion and dispersion of solvent saturation is investigated. Numerical results show excellent agreement with the results obtained from asymptotic analysis. The present numerical simulations indicate that the nonlinear effects due to skin friction and pressure drag cannot be accurately captured by Darcy’s method if the contribution of the skin friction dominates over that of the pressure drag. Moreover, mass conservation law is investigated, which is an important feature for enhanced oil recovery, and the results help to guide a good agreement with theory. This investigation examines how the flow regime may be optimized for enhanced oil recovery methods.


Sign in / Sign up

Export Citation Format

Share Document