Nano-Materials Modified Drilling Fluid for Improving Deep Drilling Conditions

2021 ◽  
pp. 1-15
Author(s):  
Jamil Abdo ◽  
Muhammad Danish Haneef

Abstract Achieving stability of drilling fluids (DFs) rheology with high temperature and pressure (HTHP) has always seen a growing focus with increasing pursuits of deep drilling operations to maximize hydrocarbon recovery. Since, there is no boundary of how deep the drilling technology can be pushed to access deep lying reservoirs, the quest to improve and stabilize the drilling fluids rheology is an open-ended and ongoing matter. This paper presents an investigation of two distinct clays namely sepiolite (SP) and attapulgite (AT) in nano-form as water-based drilling fluid (WBDF) additives for improved and stable rheological properties. The process of material sourcing, characterization, development in nano-form and testing as a drilling fluid additive at low and high temperature and pressure conditions are the main focus of this study. Through experiments it was determined that 30-60nm size range and 4wt% concentration of developed nano-materials yielded the optimal performance. Various tests were then performed at HTHP and the stability of nano-sepiolite (NSP) and nano-attapulgite (NAT) in 4wt% concentration was compared with regular drilling fluid additive (bdf403) which is used as a common rheology stabilizer in the industry. It was found that for NSP and NAT modified drilling fluids, the yield point, plastic viscosity, and gel strength were found to be retained at temperatures and pressures of up to 180 °C and 15 ksi, respectively, in contrast to bdf403 WBDF which deteriorated at much lower temperature and pressure. NSP additives were found to be more effective than NAT additives. The results confirmed a strong dependence of the DF stability on the morphological characteristics of the tested clays, implying that the properties of the DFs can be tailored by modifying the clay morphologies, particularly in the nanoform.

2021 ◽  
Author(s):  
Hanyi Zhong ◽  
Ying Guan ◽  
Zhengsong Qiu ◽  
Jie Feng ◽  
Wenlei Liu ◽  
...  

Abstract With the depletion of the conventional shallow oil/gas reservoirs and the increasing demand for oil and gas, deep drilling become more and more essential to extract the oil/gas from deep formations. However, deep drilling faces many complex challenges. One of the complexities is the degradation of polymers and flocculation of bentonite particles, leading to hardly control the rheological and filtration properties of water-based drilling fluids, especially under ultra-high temperature and high pressure (HTHP) conditions. Therefore, an experimental investigation is performed to study how bentonite-hydrothermal carbon nanocomposites will influence the rheological and filtration properties of water-based drilling fluids under ultra-HTHP conditions. Bentonite-hydrothermal carbon nanocomposites are proposed as non-polymer additives to solve the ultra-HTHP challenge in water-based drilling fluid. The nanocomposites are synthesized by facile hydrothermal reaction, in which biomass starch and sodium bentonite are used as the precursor and template, respectively. In this study, the effect of the nanocomposites on the rheology and filtration properties of water-based drilling fluid are investigated before and after hot rolling at 220 °C and 240 °C. The structure characterization indicates that carbon nanospheres can successfully deposit on the bentonite surface after hydrothermal reaction and finally form as nanocomposites. The elemental carbon content, zeta potential and particle size distribution of the nanocomposites could be adjusted according to the reaction conditions. After thermal aging at 220 °C and 240 °C, addition of nanocomposites can improve the rheological properties significantly where a stable and minor change of rheological properties is observed, which is desirable for ultra-HTHP drilling. Regarding filtration control, after adding 1.0 wt% nanocomposite materials, the filtration loss is reduced by 41% and 44% respectively after aging at 220 °C and 240 °C, which is better than the conventional natural materials that lose their function in this case. The identification of microstructure shows that the hydrothermal reaction endows nanocomposites with a unique surface morphology and an improved surface charge density. The interaction between nanocomposites and bentonite particles forms a rigid connection network, which is the main mechanism to facilitate effective rheology and filtration control under ultra-HTHP conditions. The green and facile synthetic routes and environmentally friendly features of the nanocomposites, coupled with the excellent performance in ultra-HTHP rheology and filtration control, indicate that the nanocomposites have a high promise for water-based drilling fluid in ultra-HTHP drilling. Moreover, it provides a new way to design high performance additives with high temperature stability.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7195
Author(s):  
Mesfin Belayneh ◽  
Bernt Aadnøy ◽  
Simen Moe Strømø

Bentonite-based drilling fluids are used for drilling, where inhibitive fluids are not required. The rheological and the density properties of the drilling fluids are highly affected by high temperature and pressure. Due to high temperature, the clay particles stick together, and the fluid system becomes more flocculated. Poorly designed drilling fluid may cause undesired operational issues such as poor hole cleaning, drill strings sticking, high torque and drag. In this study, the 80 °C thermally stable Herschel Bulkley’s and Bingham plastic yield stresses drilling fluids were formulated based on lignosulfonate-treated bentonite drilling fluid. Further, the impact of a MoS2 nanoparticle solution on the properties of the thermally stable base fluid was characterized. Results at room temperature and pressure showed that the blending of 0.26 wt.% MoS2 increased the lubricity of thermally stable base fluid by 27% and enhanced the thermal and electrical conductivities by 7.2% and 8.8%, respectively.


Author(s):  
Qian Ding ◽  
Baojiang Sun ◽  
Zhiyuan Wang ◽  
Yonghai Gao ◽  
Yu Gao ◽  
...  

Abstract In deep-water drilling, the drilling fluid is affected by the alternating temperature field derived from the low temperature of the seawater and the high temperature of the formation. The complicated wellbore temperature and pressure environments make the prediction of rheological properties of the drilling fluid difficult. In this study, the rheological properties of water-based drilling fluid in full temperature and pressure range of deep-water conditions were tested from 2 to 150 °C (35.6 to 302 °F) and 0.1 to 70 MPa (14.5 to 10000psi). The experiment was carried out by the OFI130-77 high temperature and high pressure rheometer. The experimental data were processed by multiple regression analysis method, and the mathematical model for predicting the apparent viscosity, plastic viscosity and yield point of water-based drilling fluid under high temperature and high pressure conditions was established. The experimental results show that when the temperature is lower than 65 °C (149 °F), the apparent viscosity and plastic viscosity of the water-based drilling fluid decrease significantly with increasing temperature. When the temperature is higher than 65 °C (149 °F), the apparent viscosity and plastic viscosity decrease slowly. Under low temperature conditions, the effect of pressure on the apparent viscosity and plastic viscosity of water-based drilling fluids is relatively significant. The calculated values of the prediction model have a good agreement with the experimental measurements. Compared with the traditional model, this prediction model has a significant improvement in the prediction accuracy in the low temperature section, which can provide a calculation basis for on-site application of deepwater drilling fluid.


2018 ◽  
Vol 213 ◽  
pp. 207-214 ◽  
Author(s):  
Michael Hack ◽  
Wolfgang Korte ◽  
Stefan Sträßer ◽  
Matthias Teschner

1999 ◽  
Vol 122 (1) ◽  
pp. 22-26 ◽  
Author(s):  
M. Law ◽  
W. Payten ◽  
K. Snowden

Modeling of welded joints under creep conditions with finite element analysis was undertaken using the theta projection method. The results were compared to modeling based on a simple Norton law. Theta projection data extends the accuracy and predictive capability of finite element modeling of critical structures operating at high temperature and pressure. In some cases analyzed, it was found that the results diverged from those gained using a Norton law creep model. [S0094-9930(00)00601-6]


2020 ◽  
Author(s):  
Dapeng Wen ◽  
Yongfeng Wang ◽  
Junfeng Zhang ◽  
Pengxiao Li ◽  
Zhen-Min Jin

Sign in / Sign up

Export Citation Format

Share Document