An Efficient One-Step Moment Balancing Algorithm for Computing Medial and Lateral Knee Compartment Contact Forces

Author(s):  
Kurt Manal ◽  
Thomas S. Buchanan

Abstract The knee adduction moment is associated with the progression of knee osteoarthritis (OA). The adduction moment reflects the net effect of muscles, passive tissues and bone-on-bone contact forces. Medial compartment OA is more common than lateral and therefore our ability to correctly partition bone-on-bones forces across the medial and lateral compartments is key to understanding mechanical factors associated with the onset and progression of knee OA. We have used frontal plane moment balancing to resolve medial and lateral compartment forces. In this technical brief we present an alternate and more efficient methodology, the 1-step approach, linking the sagittal and frontal planes in the determination of muscle forces. Muscle forces are the dominant contributors to knee joint loading and therefore our ability to predict compartmental contact is dependent on our ability to predict muscle forces. The 1-step approach introduces a penalty function limiting total compressive force from acting in the lateral compartment whenever the internal moment is net abduction (i.e., external knee adduction). Total compressive force in the lateral compartment implies greater lateral loading compared to medial, and this is inconsistent with what we know about the knee adduction moment and medial-to-lateral force distribution during gait. An EMG-driven musculoskeletal model with modified hamstrings EMG was implemented to demonstrate the 1-step methodology and compare results with frontal plane moment balancing. The 1-step approach is a more efficient methodology that can be used in place of frontal plane moment balancing.

2020 ◽  
pp. 1-9
Author(s):  
Jereme B. Outerleys ◽  
Michael J. Dunbar ◽  
Glen Richardson ◽  
Cheryl L. Hubley-Kozey ◽  
Janie L. Astephen Wilson

Total knee arthroplasty (TKA) surgery improves knee joint kinematics and kinetics during gait for most patients, but a lack of evidence exists for the level and incidence of improvement that is achieved. The objective of this study was to quantify patient-specific improvements in knee biomechanics relative to osteoarthritis (OA) severity levels. Seventy-two patients underwent 3-dimensional (3D) gait analysis before and 1 year after TKA surgery, as well as 72 asymptomatic adults and 72 with moderate knee OA. A combination of principal component analysis and discriminant analyses were used to categorize knee joint biomechanics for patients before and after surgery relative to asymptomatic, moderate, and severe OA. Post-TKA, 63% were categorized with knee biomechanics consistent with moderate OA, 29% with severe OA, and 8% asymptomatic. The magnitude and pattern of the knee adduction moment and angle (frontal plane features) were the most significant contributors in discriminating between pre-TKA and post-TKA knee biomechanics. Standard of care TKA improves knee biomechanics during gait to levels most consistent with moderate knee OA and predominately targets frontal plane features. These results provide evidence for the level of improvement in knee biomechanics that can be expected following surgery and highlight the biomechanics most targeted by surgery.


Author(s):  
Aarthi S. Shankar ◽  
Trent M. Guess

Patellofemoral Pain (PFP) syndrome is a very common knee disorder. A possible cause may be excessive lateral force applied by the quadriceps and the patellar tendon producing an abnormal distribution of force and pressure within the patellofemoral joint [1]. EMG and in-vivo studies have been conducted to understand the function of the quadriceps and its relationship with PFP [2,3]. These studies suggest a strong relationship between muscle forces and PFP which originates from high lateral retropatellar contact forces. A dynamic computational model of the knee was developed which includes the quadriceps muscles Rectus Femoris (RF), Vastus Intermedius (VI), Vastus Lateralis (VL), and Vastus Medialis (VM) represented as force vectors. The model can predict retro-patellar contact pressures and the action of the individual quadriceps muscles based on the predicted pressures. The objective of this study was to develop a control system which could optimize the distribution of quadriceps muscle forces to minimize contact pressure between the patella and the femur of the knee during a squat.


2012 ◽  
Vol 28 (5) ◽  
pp. 551-559 ◽  
Author(s):  
Joaquin A. Barrios ◽  
Todd D. Royer ◽  
Irene S. Davis

Dynamic knee alignment is speculated to have a stronger relationship to medial knee loading than radiographic alignment. Therefore, we aimed to determine what frontal plane knee kinematic variable correlated most strongly to the knee adduction moment. That variable was then compared with radiographic alignment as a predictor of the knee adduction moment. Therefore, 55 subjects with medial knee OA underwent three-dimensional gait analysis. A subset of 21 subjects also underwent full-limb radiographic assessment for knee alignment. Correlations and regression analyses were performed to assess the relationships between the kinematic, kinetic and radiographic findings. Peak knee adduction angle most strongly correlated to the knee adduction moment of the kinematic variables. In comparison with radiographic alignment, peak knee adduction angle was the stronger predictor. Given that most epidemiological studies on knee OA use radiographic alignment in an attempt to understand progression, these results are meaningful.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Hunter J. Bennett ◽  
Joshua T. Weinhandl ◽  
Kristina Fleenor ◽  
Songning Zhang

Static frontal plane tibiofemoral alignment is an important factor in dynamic knee alignment and knee adduction moments (KAMs). However, little is known about the relationship between alignment and compartment contact forces or muscle control strategies. The purpose of this study was to estimate medial (MCF) and lateral (LCF) compartment knee joint contact forces and muscle forces during stair ascent using a musculoskeletal model implementing subject-specific knee alignments. Kinematic and kinetic data from 20 healthy individuals with radiographically confirmed varus or valgus knee alignments were simulated using alignment specific models to predict MCFs and LCFs. Muscle forces were determined using static optimization. Independent samples t-tests compared contact and muscle forces between groups during weight acceptance and during pushoff. The varus group exhibited increased weight acceptance peak MCFs, while the valgus group exhibited increased pushoff peak LCFs. The varus group utilized increased vasti muscle forces during weight acceptance and adductor forces during pushoff. The valgus group utilized increased abductor forces during pushoff. The alignment-dependent contact forces provide evidence of the significance of frontal plane knee alignment in healthy individuals, which may be important in considering future knee joint health. The differing muscle control strategies between alignments detail-specific neuromuscular responses to control frontal plane knee loads.


Author(s):  
Kurt Manal ◽  
Thomas S. Buchanan

The medial compartment of the knee is the joint most often affected in those with osteoarthritis (OA). The knee adduction moment is a widely used surrogate measure of joint loading as direct measures are not possible except for a few individuals fitted with a force sensing prosthesis. A reduction in the frontal plane moment is believed to be associated with reduced joint compression. As such, treatments and/or gait alterations to reduce the magnitude of the adduction moment have been sought for those with knee OA. Walking with a medial thrust gait has been shown to reduce the magnitude of the knee adduction moment. The purpose of this paper is to apply our EMG-driven musculoskeletal model of the knee to predict muscle forces and condylar loading during normal and medial thrust gait for an individual fitted with an instrumented knee. It was anticipated that walking with a medial thrust gait would produce a reduced knee adduction moment. We propose however that a reduced knee adduction moment may not necessarily be associated with a decrease in medial compartment loading, and importantly, one must consider how the knee extensor moment changes before making inferences about joint loading.


Author(s):  
Jennifer C. Erhart ◽  
Chris Dyrby ◽  
Darryl D. D’Lima ◽  
Clifford W. Colwell ◽  
Thomas P. Andriacchi

Osteoarthritis (OA) of the knee affects an estimated 20–40% of individuals over the age of 65 [1], and is nearly 10 times more common in the medial compartment than the lateral compartment [2]. Many studies have reported the effectiveness of footwear modifications using laterally-wedged insoles [3,4] and more recently, variable-stiffness soles [5] in reducing the adduction moment at the knee in patients with medial compartment knee OA. The adduction moment is known to be associated with the progression [6] and treatment outcome [7] of medial compartment knee OA, and has been shown to be correlated with medial compartment joint loading [8]. However, the exact changes in medial compartment joint loading in vivo with the variable-stiffness shoe remain unknown. The development of an instrumented total knee implant which has the ability to directly measure tibial forces, and can differentiate between medial and lateral joint loads in vivo during walking [9], allows the testing of changes in the medial compartment loading with an intervention shoe.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Margit Biehl ◽  
Philipp Damm ◽  
Adam Trepczynski ◽  
Stefan Preiss ◽  
Gian Max Salzmann

Abstract Purpose Despite practised for decades, the planning of osteotomy around the knee, commonly using the Mikulicz-Line, is only empirically based, clinical outcome inconsistent and the target angle still controversial. A better target than the angle of frontal-plane static leg alignment might be the external frontal-plane lever arm (EFL) of the knee adduction moment. Hypothetically assessable from frontal-plane-radiograph skeleton dimensions, it might depend on the leg-alignment angle, the hip-centre-to-hip-centre distance, the femur- and tibia-length. Methods The target EFL to achieve a medial compartment force ratio of 50% during level-walking was identified by relating in-vivo-measurement data of knee-internal loads from nine subjects with instrumented prostheses to the same subjects’ EFLs computed from frontal-plane skeleton dimensions. Adduction moments derived from these calculated EFLs were compared to the subjects’ adduction moments measured during gait analysis. Results Highly significant relationships (0.88 ≤ R2 ≤ 0.90) were found for both the peak adduction moment measured during gait analysis and the medial compartment force ratio measured in vivo to EFL calculated from frontal-plane skeleton dimensions. Both correlations exceed the respective correlations with the leg alignment angle, EFL even predicts the adduction moment’s first peak. The guideline EFL for planning osteotomy was identified to 0.349 times the epicondyle distance, hence deducing formulas for individualized target angles and Mikulicz-Line positions based on full-leg radiograph skeleton dimensions. Applied to realistic skeleton geometries, widespread results explain the inconsistency regarding correction recommendations, whereas results for average geometries exactly meet the most-consented “Fujisawa-Point”. Conclusion Osteotomy outcome might be improved by planning re-alignment based on the provided formulas exploiting full-leg-radiograph skeleton dimensions.


2006 ◽  
Vol 39 ◽  
pp. S492 ◽  
Author(s):  
L.F. Silveira ◽  
C. Bernardes ◽  
G. Portella ◽  
F. Araujo ◽  
J. Loss

2016 ◽  
Vol 52 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Ran S Sopher ◽  
Andrew A Amis ◽  
D Ceri Davies ◽  
Jonathan RT Jeffers

Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.


Sign in / Sign up

Export Citation Format

Share Document