On the Determination of Thermal Conductivity From Frequency Domain Thermoreflectance Experiments

2021 ◽  
Author(s):  
Siddharth Saurav ◽  
Sandip Mazumder

Abstract The Fourier and the hyperbolic heat conduction equations were solved numerically to simulate a frequency-domain thermoreflectance (FDTR) experiment. Numerical solutions enable isolation of pump and probe laser spot size effects, and use of realistic boundary conditions. The equations were solved in time domain and the phase lag between the temperature of the transducer (averaged over the probe laser spot) and the modulated pump laser signal, were computed for a modulation frequency range of 200 kHz to 200 MHz. Numerical calculations showed that extracted values of the thermal conductivity are sensitive to both the pump and probe laser spot sizes, while analytical solutions (based on Hankel transform) cannot isolate the two effects, although for the same effective (combined) spot size, the two solutions are found to be in excellent agreement. If the substrate (computational domain) is sufficiently large, the far-field boundary conditions were found to have no effect on the computed phase lag. The interface conductance between the transducer and the substrate was found to have some effect on the extracted thermal conductivity. The hyperbolic heat conduction equation yielded almost the same results as the Fourier heat conduction equation for the particular case studied. The numerically extracted thermal conductivity value (best fit) for the silicon substrate considered in this study was found to be about 82-108 W/m/K, depending on the pump and probe laser spot sizes used.

Author(s):  
Siddharth Saurav ◽  
Sandip Mazumder

Abstract The Fourier heat conduction and the hyperbolic heat conduction equations were solved numerically to simulate a frequency-domain thermoreflectance (FDTR) experimental setup. Numerical solutions enable use of realistic boundary conditions, such as convective cooling from the various surfaces of the substrate and transducer. The equations were solved in time domain and the phase lag between the temperature at the center of the transducer and the modulated pump laser signal were computed for a modulation frequency range of 200 kHz to 200 MHz. It was found that the numerical predictions fit the experimentally measured phase lag better than analytical frequency-domain solutions of the Fourier heat equation based on Hankel transforms. The effects of boundary conditions were investigated and it was found that if the substrate (computational domain) is sufficiently large, the far-field boundary conditions have no effect on the computed phase lag. The interface conductance between the transducer and the substrate was also treated as a parameter, and was found to have some effect on the predicted thermal conductivity, but only in certain regimes. The hyperbolic heat conduction equation yielded identical results as the Fourier heat conduction equation for the particular case studied. The thermal conductivity value (best fit) for the silicon substrate considered in this study was found to be 108 W/m/K, which is slightly different from previously reported values for the same experimental data.


Author(s):  
Seyed Reza Mahmoudi ◽  
Nikola Toljic

Analytical solution of hyperbolic heat conduction equation has so far been limited only to one-dimensional frameworks. With the expanding of the application range for the fast heat sources in microelectronic industries, the two-dimensional solution of non-Fourier heat conduction becomes increasingly important. This paper presents an exact solution of hyperbolic heat conduction equation for a finite plane with sides subjected to combined boundary conditions. In the mathematical model, the heating on boundaries is treated as an apparent heat source whereas sides of the plane with the second kind boundaries are assumed to be insulated. The important characteristic of the proposed solution is its simplicity.


Author(s):  
Jayangani I. Ranasinghe ◽  
Ericmoore Jossou ◽  
Linu Malakkal ◽  
Barbara Szpunar ◽  
Jerzy A. Szpunar

The understanding of the radial distribution of temperature in a fuel pellet, under normal operation and accident conditions, is important for a safe operation of a nuclear reactor. Therefore, in this study, we have solved the steady-state heat conduction equation, to analyze the temperature profiles of a 12 mm diameter cylindrical dispersed nuclear fuels of U3O8-Al, U3Si2-Al, and UN-Al operating at 597 °C. Moreover, we have also derived the thermal conductivity correlations as a function of temperature for U3Si2, uranium mononitride (UN), and Al. To evaluate the thermal conductivity correlations of U3Si2, UN, and Al, we have used density functional theory (DFT) as incorporated in the Quantum ESPRESSO (QE) along with other codes such as Phonopy, ShengBTE, EPW (electron-phonon coupling adopting Wannier functions), and BoltzTraP (Boltzmann transport properties). However, for U3O8, we utilized the thermal conductivity correlation proposed by Pillai et al. Furthermore, the effective thermal conductivity of dispersed fuels with 5, 10, 15, 30, and 50 vol %, respectively of dispersed fuel particle densities over the temperature range of 27–627 °C was evaluated by Bruggman model. Additionally, the temperature profiles and temperature gradient profiles of the dispersed fuels were evaluated by solving the steady-state heat conduction equation by using Maple code. This study not only predicts a reduction in the centerline temperature and temperature gradient in dispersed fuels but also reveals the maximum concentration of fissile material (U3O8, U3Si2, and UN) that can be incorporated in the Al matrix without the centerline melting. Furthermore, these predictions enable the experimental scientists in selecting an appropriate dispersion fuel with a lower risk of fuel melting and fuel cracking.


Volume 4 ◽  
2004 ◽  
Author(s):  
Illayathambi Kunadian ◽  
J. M. McDonough ◽  
K. A. Tagavi

In the present work we investigate femtosecond laser heating of nanoscale metal films irradiated by a pulsating laser in three dimensions using the Dual Phase Lag (DPL) model and consider laser heating at different locations on the metal film. A numerical solution based on an explicit finite-difference method has been employed to solve the DPL heat conduction equation. The stability criterion for selecting a time step size is obtained using von Neumann eigenmode analysis, and grid function convergence tests have been performed. The energy absorption rate, which is used to model femtosecond laser heating, has been modified to accommodate for the three-dimensional laser heating. We compare our results with classical diffusion and hyperbolic heat conduction models and demonstrate significant differences among these three approaches. The present research enables us to study ultrafast laser heating mechanisms of nano-films in 3D.


Sign in / Sign up

Export Citation Format

Share Document