Quenching Vibration on a Harmonically Excited Symmetric Laminated Composite Plate

2021 ◽  
pp. 1-35
Author(s):  
Jiawang Chen ◽  
Philip Cha ◽  
Yichang Shen ◽  
Xiang Zhou

Abstract In this paper a simple and efficient method is developed to quench the steady state vibration of a harmonically excited, damped and symmetric laminated composite rectangular plate. This is achieved by enforcing points of zero displacement, or nodes, at some specified locations on the laminated composite plate using properly tuned damped oscillators. Using the assumed-modes method, the governing equations of the laminated composite plate carrying the damped oscillators are first formulated. A set of constraint equations is established by enforcing nodes at user-specified locations on the plate. Two attachment scenarios are considered: when the attachment and node locations coincide, and when they are distinct. Numerical experiments show that for both cases, the damped oscillator parameters can be readily determined and the desired node locations can be successfully imposed. More importantly, enforcing nodes can suppress vibration in the vicinity of the node locations, thereby keeping that region of the laminated composite plate nearly stationary.

Author(s):  
Min Ye ◽  
Yanhong Sun ◽  
Qian Ding ◽  
Wei Zhang

In this paper, nonlinear dynamics of a simply supported antisymmetric cross-ply laminated composite thin rectangular plate under parametric excitation is investigated. The governing equations of motion for the antisymmetric cross-ply laminated composite plate are derived by using von Karman type plate equation. The geometric nonlinearity and nonlinear damping are included in the governing equations of motion. A two-degree-of-freedom parametrically excited nonlinear system including the quadratic and cubic nonlinear terms is obtained by using the Galerkin method. Based on the Fourier expansion and the temporal rescaling, an asymptotic perturbation method is utilized to obtained four-dimensional nonlinear averaged equations on the amplitude and the phase of nonlinear oscillations of the antisymmetric cross-ply laminated composite plate for the first time. Based on the averaged equations, the steady state nonlinear responses and their stabilities are determined by using numerical approach. The relations between the steady state nonlinear responses and the amplitude and frequency of parametric excitation are obtained. Under the certain conditions, the antisymmetric cross-ply laminated composite plate may have two steady state nonzero solutions in which the jumping phenomenon occurs.


2021 ◽  
Vol 8 (1) ◽  
pp. 1-12
Author(s):  
Ashok Magar ◽  
Achchhe Lal

Abstract This paper presents the solution of stress distribution around elliptical cutout in an infinite laminated composite plate. Analysis is done for in plane loading under hygrothermal environment. The formulation to obtain stresses around elliptical hole is based on Muskhelishvili’s complex variable method. The effect of fibre angle, type of in plane loading, volume fraction of fibre, change in temperature, fibre materials, stacking sequence and environmental conditions on stress distribution around elliptical hole is presented. The study revealed, these factors have significant effect on stress concentration in hygrothermal environment and stress concentration changes are significant with change in temperature.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 995
Author(s):  
Venkatachalam Gopalan ◽  
Vimalanand Suthenthiraveerappa ◽  
Jefferson Stanley David ◽  
Jeyanthi Subramanian ◽  
A. Raja Annamalai ◽  
...  

The evolution of a sustainable green composite in various loadbearing structural applications tends to reduce pollution, which in turn enhances environmental sustainability. This work is an attempt to promote a sustainable green composite in buckling loadbearing structural applications. In order to use the green composite in various structural applications, the knowledge on its structural stability is a must. As the structural instability leads to the buckling of the composite structure when it is under an axial compressive load, the work on its buckling characteristics is important. In this work, the buckling characteristics of a woven flax/bio epoxy (WFBE) laminated composite plate are investigated experimentally and numerically when subjected to an axial compressive load. In order to accomplish the optimization study on the buckling characteristics of the composite plate among various structural criterions such as number of layers, the width of the plate and the ply orientation, the optimization tool “response surface methodology” (RSM) is used in this work. The validation of the developed finite element model in Analysis System (ANSYS) version 16 is carried out by comparing the critical buckling loads obtained from the experimental test and numerical simulation for three out of twenty samples. A comparison is then made between the numerical results obtained through ANSYS16 and the results generated using the regression equation. It is concluded that the buckling strength of the composite escalates with the number of layers, the change in width and the ply orientation. It is also noted that the weaving model of the fabric powers the buckling behavior of the composite. This work explores the feasibility of the use of the developed green composite in various buckling loadbearing structural applications. Due to the compromised buckling characteristics of the green composite with the synthetic composite, it has the capability of replacing many synthetic composites, which in turn enhances the sustainability of the environment.


Sign in / Sign up

Export Citation Format

Share Document