Diagnostic of Injury Risk in the Anterior Cruciate Ligament Based On Shape Context Description of the Intercondylar Notch Curvature

Author(s):  
Joao Paulo Dias ◽  
Ariful Bhuiyan ◽  
Nabila Shamim

Abstract An estimated number of 300,000 new anterior cruciate ligament (ACL) injuries occur each year in the United States. Although several magnetic resonance (MR) imaging-based ACL diagnostics methods have already been proposed in the literature, most of them are based on machine learning or deep learning strategies, which are computationally expensive. In this paper, we propose a diagnostics framework for the risk of injury in the anterior cruciate ligament (ACL) based on the application of the inner-distance shape context (IDSC) to describe the curvature of the intercondylar notch from MR images. First, the contours of the intercondylar notch curvature from 91 MR images of the distal end of the femur (70 healthy and 21 with confirmed ACL injury) were extracted manually using standard image processing tools. Next, the IDSC was applied to calculate the similarity factor between the extracted contours and reference standard curvatures. Finally, probability density functions of the similarity factor data were obtained through parametric statistical inference, and the accuracy of the ACL injury risk diagnostics framework was assessed using receiver operating characteristic analysis (ROC). The overall results for the area under the curve (AUC) showed that method reached a maximum accuracy of about 66%. Furthermore, the sensitivity and specificity results showed that an optimum discrimination threshold value for the similarity factor can be pursued that minimizes the incidence of false positives and false positives simultaneously.

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 997
Author(s):  
Alessandro de Sire ◽  
Nicola Marotta ◽  
Andrea Demeco ◽  
Lucrezia Moggio ◽  
Pasquale Paola ◽  
...  

Anterior cruciate ligament (ACL) injury incidence is often underestimated in tennis players, who are considered as subjects conventionally less prone to knee injuries. However, evaluation of the preactivation of knee stabilizer muscles by surface electromyography (sEMG) showed to be a predictive value in the assessment of the risk of ACL injury. Therefore, this proof-of-concept study aimed at evaluating the role of visual input on the thigh muscle preactivation through sEMG to reduce ACL injury risk in tennis players. We recruited male, adult, semiprofessional tennis players from July to August 2020. They were asked to drop with the dominant lower limb from a step, to evaluate—based on dynamic valgus stress—the preactivation time of the rectus femoris (RF), vastus medialis, biceps femoris, and medial hamstrings (MH), through sEMG. To highlight the influence of visual inputs, the athletes performed the test blindfolded and not blindfolded on both clay and grass surfaces. We included 20 semiprofessional male players, with a mean age 20.3 ± 4.8 years; results showed significant early muscle activation when the subject lacked visual input, but also when faced with a less-safe surface such as clay over grass. Considering the posteromedial–anterolateral relationship (MH/RF ratio), tennis players showed a significant higher MH/RF ratio if blindfolded (22.0 vs. 17.0% not blindfolded; p < 0.01) and percentage of falling on clay (17.0% vs. 14.0% in grass; p < 0.01). This proof-of-principle study suggests that in case of absence of visual input or falling on a surface considered unsafe (clay), neuro-activation would tend to protect the anterior stress of the knee. Thus, the sEMG might play a crucial role in planning adequate athletic preparation for semiprofessional male athletes in terms of reduction of ACL injury risk.


2021 ◽  
pp. 1-8
Author(s):  
Elena M. D’Argenio ◽  
Timothy G. Eckard ◽  
Barnett S. Frank ◽  
William E. Prentice ◽  
Darin A. Padua

Context: Anterior cruciate ligament (ACL) injuries are a common and devastating injury in women’s soccer. Several risk factors for ACL injury have been identified, but have not yet been examined as potentially dynamic risk factors, which may change throughout a collegiate soccer season. Design: Prospective cohort study. Methods: Nine common clinical screening assessments for ACL injury risk, consisting of range of motion, movement quality, and power, were assessed in 29 Division I collegiate women’s soccer players. Preseason and midseason values were compared for significant differences. Change scores for each risk factor were also correlated with cumulative training loads during the first 10 weeks of a competitive soccer season. Results: Hip external rotation range of motion and power had statistically significant and meaningful differences at midseason compared with preseason, indicating they are dynamic risk factors. There were no significant associations between the observed risk factor changes and cumulative training load. Conclusions: Hip external rotation range of motion and power are dynamic risk factors for ACL injury in women’s collegiate soccer athletes. Serial screening of these risk factors may elucidate stronger associations with injury risk and improve prognostic accuracy of screening tools.


2009 ◽  
Vol 44 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Jon G. Divine ◽  
Eric J. Wall ◽  
Leamor Kahanov ◽  
...  

Abstract Objective: To present a unique case of a young pubertal female athlete who was prospectively monitored for previously identified anterior cruciate ligament (ACL) injury risk factors for 3 years before sustaining an ACL injury. Background: In prospective studies, previous investigators have examined cross-sectional measures of anatomic, hormonal, and biomechanical risk factors for ACL injury in young female athletes. In this report, we offer a longitudinal example of measured risk factors as the participant matured. Differential Diagnosis: Partial or complete tear of the ACL. Measurements: The participant was identified from a cohort monitored from 2002 until 2007. No injury prevention training or intervention was included during this time in the study cohort. Findings: The injury occurred in the year after the third assessment during the athlete's club basketball season. Knee examination, magnetic resonance imaging findings, and arthroscopic evaluation confirmed a complete ACL rupture. The athlete was early pubertal in year 1 of the study and pubertal during the next 2 years; menarche occurred at age 12 years. At the time of injury, she was 14.25 years old and postpubertal, with closing femoral and tibial physes. For each of the 3 years before injury, she demonstrated incremental increases in height, body mass index, and anterior knee laxity. She also displayed decreased hip abduction and knee flexor strength, concomitant with increased knee abduction loads, after each year of growth. Conclusions: During puberty, the participant increased body mass and height of the center of mass without matching increases in hip and knee strength. The lack of strength and neuromuscular adaptation to match the increased demands of her pubertal stature may underlie the increased knee abduction loads measured at each annual visit and may have predisposed her to increased risk of ACL injury.


2019 ◽  
Vol 12 ◽  
pp. 117954411986792
Author(s):  
Volkan Kızılgöz ◽  
Ali Kemal Sivrioğlu ◽  
Hasan Aydın ◽  
Gökhan Ragıp Ulusoy ◽  
Türkhun Çetin ◽  
...  

Introduction: Tibial slope angles (TSAs) have been identified as potential risk factors of anterior cruciate ligament (ACL) injury in the literature. A higher body mass index (BMI) might increase the risk of ACL tear because of greater axial compressive force. The aim of this study was to determine the relationship of these factors and the combined effect of BMI and TSA in determination of risk potential for ACL injury. Methods: The preoperative magnetic resonance (MR) images of 81 ACL-injured male knees and of 68 male individuals with no ACL injuries were evaluated by 2 radiologists to measure the TSA. The Mann-Whitney U-test was performed to indicate the significant difference in height, weight, and BMI values. The independent samples t-test was used to determine the differences between ACL-injured and non-injured groups regarding TSA values. Odds ratios were calculated by logistic regression tests, and receiver operating characteristics (ROC) curves revealed the area under the receiver operating characteristics curve (AUC) values to compare the relationships of these parameters with ACL injury. Results: Body mass index, lateral tibial slope (LTS), and medial tibial slope (MTS) were predictive of ACL risk injury. Body mass index alone had the greatest effect among these parameters, and there were no statistically significant differences in coronal tibial slope values between the ACL-ruptured and control groups. The greatest AUC was observed for the combination of BMI, MTS, and LTS. Conclusions: Body mass index, LTS, and MTS angles were associated with ACL injury risk and BMI + MTS + LTS together revealed the greatest effect on ACL injury.


2020 ◽  
Vol 9 (1) ◽  
pp. 72-78
Author(s):  
Sandra J. Shultz ◽  
Randy J. Schmitz

Despite considerable advances in anterior cruciate ligament (ACL) injury-risk identification and prevention over the past 20 years, the annual incidence of ACL injury has continued to rise, and females remain at greater risk of both primary and secondary ACL injury. Important questions remain regarding ancillary risk factors we should target, the most effective training and rehabilitation approaches to ensure retention and transfer of learned skills from the rehabilitation setting to real-world sporting environment, and the development of more evidence-based criteria for return to sport that consider the whole athlete. As we look to the future, the optimization of primary and secondary ACL-injury prevention represents a complex, multidisciplinary problem with many unique and exciting opportunities to engage the various subdisciplines of kinesiology to address these emerging questions.


2019 ◽  
Vol 54 (5) ◽  
pp. 513-518 ◽  
Author(s):  
Hsin-Min Wang ◽  
Sandra J. Shultz ◽  
Scott E. Ross ◽  
Robert A. Henson ◽  
David H. Perrin ◽  
...  

Context Females have consistently higher anterior cruciate ligament (ACL) injury rates than males. The reasons for this disparity are not fully understood. Whereas ACL morphometric characteristics are associated with injury risk and females have a smaller absolute ACL size, comprehensive sex comparisons that adequately account for sex differences in body mass index (BMI) have been limited. Objective To investigate sex differences among in vivo ACL morphometric measures before and after controlling for femoral notch width and BMI. Design Cross-sectional study. Setting Laboratory. Patients or Other Participants Twenty recreationally active men (age = 23.2 ± 2.9 years, height = 180.4 ± 6.7 cm, mass = 84.0 ± 10.9 kg) and 20 recreationally active women (age = 21.3 ± 2.3 years, height = 166.9 ± 7.7 cm, mass = 61.9 ± 7.2 kg) participated. Main Outcome Measure(s) Structural magnetic resonance imaging sequences were performed on the left knee. Anterior cruciate ligament volume, width, and cross-sectional area measures were obtained from T2-weighted images and normalized to femoral notch width and BMI. Femoral notch width was measured from T1-weighted images. We used independent-samples t tests to examine sex differences in absolute and normalized measures. Results Men had greater absolute ACL volume (1712.2 ± 356.3 versus 1200.1 ± 337.8 mm3; t38 = −4.67, P &lt; .001) and ACL width (8.5 ± 2.3 versus 7.0 ± 1.2 mm; t38 = −2.53, P = .02) than women. The ACL volume remained greater in men than in women after controlling for femoral notch width (89.31 ± 15.63 versus 72.42 ± 16.82 mm3/mm; t38 = −3.29, P = .002) and BMI (67.13 ± 15.40 versus 54.69 ± 16.39 mm3/kg/m2; t38 = −2.47, P = .02). Conclusions Whereas men had greater ACL volume and width than women, only ACL volume remained different when we accounted for femoral notch width and BMI. This suggests that ACL volume may be an appropriate measure of ACL anatomy in investigations of ACL morphometry and ACL injury risk that include sex comparisons.


2015 ◽  
Vol 46 (5) ◽  
pp. 715-735 ◽  
Author(s):  
Aaron S. Fox ◽  
Jason Bonacci ◽  
Scott G. McLean ◽  
Michael Spittle ◽  
Natalie Saunders

Sign in / Sign up

Export Citation Format

Share Document