A Novel and Inexpensive Technique for High-tension Tendon Clamping with Expandable Mesh Sleeving for in Vitro Foot Biomechanics Testing

Author(s):  
Joshua L. Golubovsky ◽  
Callan M Gillespie ◽  
Tara F. Nagle ◽  
Jeremy G Loss ◽  
Robb Colbrunn

Abstract In vitro biomechanical testing is common in the field of orthopedics when novel devices are investigated prior to human trials. It is typically necessary to apply loads through tendons to simulate normal activities, such as walking during a foot and ankle study. However, attachment of tendons to linear actuators has proven challenging because of the tendency of clamps to either slip off or rupture the tendon. Freeze clamping is generally accepted as the gold standard for very high load testing in excess of 3000 N, but is expensive, time-consuming, and requires significant ancillary equipment. Purely mechanical solutions such as metal jaw clamps, wire meshes, and others have been explored, but these techniques are either costly, have low load capacities, or have not proven to be reproducible. We have developed a novel tendon clamping technique that utilizes a slip-resistant polyester mesh sleeving that encases the tendon and is fixated at the bottom of the tendon/sleeve interaction with a giftbox suture. The loose end of the sleeving can then be tied in to the linear actuator or load cell apparatus using a timber hitch knot. The sleeving technique allows for loads of 2000-2500 N on the Achilles tendon, and is inexpensive, reproducible, and can be modified to apply loads to smaller tendons as well, though a length of tendon/sleeve overlap of at least 16 cm is required to reach maximum loads. This technique should assist researchers in integrating muscle forces into future biomechanical study designs.

2006 ◽  
Vol 4 (3) ◽  
pp. 206-212 ◽  
Author(s):  
Ung-Kyu Chang ◽  
Jesse Lim ◽  
Daniel H. Kim

Object Advances in the design of a smaller-diameter rod system for use in the thoracolumbar region prompted the authors to undertake this biomechanical study of two different thoracolumbar implants. Methods In vitro biomechanical testing was performed using human cadaveric spines. All specimens were loaded to a maximum moment of 5 Nm with 300-N axial preload in six modes of motion. Two types of anterior implants with different rod diameters were applied to intact T10–12 specimens in two groups. The loading was repeated and the range of motion (ROM) was measured. A T-11 corpectomy was then performed and a strain gauge–mounted carbon fiber stackable cage was implanted. The ROM and compression force on the cage were measured, and the mean values were compared between these two groups. With stabilization of the intact spine, ROM decreased least in extension and greatest in bending compared with the intact specimens. After corpectomy and stabilization, ROM increased in extension by 104.89 ± 53.09% in specimens with a 6.35-mm rod insertion and by 83.81 ± 16.96% in those with a 5.5-mm rod, respectively; in flexion, ROM decreased by 26.98 ± 27.43% (6.35 mm) and by 9.59 ± 15.42% (5.5 mm), respectively; and in bending and rotation, both groups each showed a decrease in ROM. The load sharing of the cage was similar between the two groups (the 6.35-mm compared with 5.5-mm rods): 47.44 and 44.73% (neutral), 49.16 and 39.02% (extension), 61.90 and 56.88% (flexion), respectively. Conclusions There were no statistical differences in the ROM and load sharing of the cage when either the 6.35-or 5.5-mm-diameter dual-rod was used.


2016 ◽  
Vol 24 (5) ◽  
pp. 708-714 ◽  
Author(s):  
Derrick A. Dupré ◽  
Daniel J. Cook ◽  
J. Brad Bellotte ◽  
Michael Y. Oh ◽  
Donald Whiting ◽  
...  

OBJECTIVE Spinal stability is attributed in part to osteoligamentous structures, including the vertebral body, facets, intervertebral discs, and posterior elements. The materials in this study provide an opportunity to augment the degenerated nucleus without removing native disc material, a procedure introduced here as “fortification.” The objective of this study was to determine the effect of nucleus fortification on lumbar disc biomechanics. METHODS The authors performed in vitro analysis of human cadaveric functional spinal units (FSUs), along with characterization and quantification of movement of the units using biomechanical data in intact, disc-only, and fortified specimens. The units underwent removal of all posterior elements and annulus and were fortified by injecting a biogel into the nucleus pulposus. Each specimen was subjected to load testing, range of motion (ROM) quantification, and disc bulge measurements. Optoelectric tracking was used to quantify disc bulge. These criteria were assessed in the intact, disc-only, and fortified treatments. RESULTS Disc-only FSUs resulted in increased ROM when compared with intact and fortified conditions. Fortification of the FSU resulted in partial restoration of normal ROM in the treatment groups. Analysis of hysteresis loops showed more linear response in the fortified groups when compared with the intact and disc-only groups. CONCLUSIONS Disc nucleus fortification increases linearity and decreases ROM.


2005 ◽  
Vol 2 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Patrick W. Hitchon ◽  
Kurt Eichholz ◽  
Christopher Barry ◽  
Paige Rubenbauer ◽  
Aditya Ingalhalikar ◽  
...  

Object. The authors compared the biomechanical performance of the human cadaveric spine implanted with a metallic ball-and-cup artificial disc at L4–5 with the spine's intact state and after anterior discectomy. Methods. Seven human L2—S1 cadaveric spines were mounted on a biomechanical testing frame. Pure moments of 0, 1.5, 3.0, 4.5, and 6.0 Nm were applied to the spine at L-2 in six degrees of motion (flexion, extension, right and left lateral bending, and right and left axial rotation). The spines were tested in the intact state as well as after anterior L4–5 discectomy. The Maverick disc was implanted in the discectomy defect, and load testing was repeated. The artificial disc created greater rigidity for the spine than was present after discectomy, and the spine performed biomechanically in a manner comparable with the intact state. Conclusions. The results indicate that in an in vitro setting, this model of artificial disc stabilizes the spine after discectomy, restoring motion comparable with that of the intact state.


2016 ◽  
Vol 32 (2) ◽  
pp. 210-214 ◽  
Author(s):  
Alexander Synek ◽  
Yan Chevalier ◽  
Christian Schröder ◽  
Dieter H. Pahr ◽  
Sebastian F. Baumbach

The variety of experimental setups used during in vitro testing of distal radius fracture treatments impairs interstudy comparison and might lead to contradictory results. Setups particularly differ with respect to their boundary conditions, but the influence on the experimental outcome is unknown. The aim of this biomechanical study was to investigate the effects of 2 common boundary conditions on the biomechanical properties of an extra-articular distal radius fracture treated using volar plate osteosynthesis. Uniaxial compression tests were performed on 10 synthetic radii that were randomized into a proximally constrained group (ProxConst) or proximally movable group (ProxMove). The load was applied distally through a ball joint to enable distal fragment rotation. A significantly larger (ProxConst vs ProxMove) stiffness (671.6 ± 118.9 N·mm−1 vs 259.6 ± 49.4 N·mm−1), elastic limit (186.2 ± 24.4 N vs 75.4 ± 20.2 N), and failure load (504.9 ± 142.5 N vs 200.7 ± 49.0 N) were found for the ProxConst group. The residual tilt did not differ significantly between the 2 groups. We concluded that the boundary conditions have a profound impact on the experimental outcome and should be considered more carefully in both study design and interstudy comparison.


2015 ◽  
Vol 04 (S 01) ◽  
Author(s):  
Masao Nishiwaki ◽  
Mark Welsh ◽  
Louis Ferreira ◽  
James Johnson ◽  
Graham King ◽  
...  

2019 ◽  
Vol 14 (6) ◽  
pp. 504-518 ◽  
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Bassam Felipe Mogharbel ◽  
Priscila Elias Ferreira ◽  
Ana Carolina Irioda ◽  
Katherine Athayde Teixeira de Carvalho

This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords “ADIPOSE”, “CELLS”, and “PERIODONTAL”, with the Boolean operator “AND”. A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.


2019 ◽  
Vol 28 (5) ◽  
pp. 974-981 ◽  
Author(s):  
Armin Badre ◽  
David T. Axford ◽  
Sara Banayan ◽  
James A. Johnson ◽  
Graham J.W. King

Arthroplasty ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Toni Wendler ◽  
Torsten Prietzel ◽  
Robert Möbius ◽  
Jean-Pierre Fischer ◽  
Andreas Roth ◽  
...  

Abstract Background All current total hip arthroplasty (THA) systems are modular in design. Only during the operation femoral head and stem get connected by a Morse taper junction. The junction is realized by hammer blows from the surgeon. Decisive for the junction strength is the maximum force acting once in the direction of the neck axis, which is mainly influenced by the applied impulse and surrounding soft tissues. This leads to large differences in assembly forces between the surgeries. This study aimed to quantify the assembly forces of different surgeons under influence of surrounding soft tissue. Methods First, a measuring system, consisting of a prosthesis and a hammer, was developed. Both components are equipped with a piezoelectric force sensor. Initially, in situ experiments on human cadavers were carried out using this system in order to determine the actual assembly forces and to characterize the influence of human soft tissues. Afterwards, an in vitro model in the form of an artificial femur (Sawbones Europe AB, Malmo, Sweden) with implanted measuring stem embedded in gelatine was developed. The gelatine mixture was chosen in such a way that assembly forces applied to the model corresponded to those in situ. A study involving 31 surgeons was carried out on the aforementioned in vitro model, in which the assembly forces were determined. Results A model was developed, with the influence of human soft tissues being taken into account. The assembly forces measured on the in vitro model were, on average, 2037.2 N ± 724.9 N, ranging from 822.5 N to 3835.2 N. The comparison among the surgeons showed no significant differences in sex (P = 0.09), work experience (P = 0.71) and number of THAs performed per year (P = 0.69). Conclusions All measured assembly forces were below 4 kN, which is recommended in the literature. This could lead to increased corrosion following fretting in the head-neck interface. In addition, there was a very wide range of assembly forces among the surgeons, although other influencing factors such as different implant sizes or materials were not taken into account. To ensure optimal assembly force, the impaction should be standardized, e.g., by using an appropriate surgical instrument.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 733
Author(s):  
Milan Krticka ◽  
Ladislav Planka ◽  
Lucy Vojtova ◽  
Vladimir Nekuda ◽  
Premysl Stastny ◽  
...  

Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing fibroblast growth factor-2 (FGF2-STAB®) exhibiting a functional half-life in vitro at 37 °C more than 20 days was applied for lumbar fusion in combination with a bioresorbable scaffold on porcine models. An experimental animal study was designed to investigate the intervertebral fusion efficiency and safety of a bioresorbable ceramic/biopolymer hybrid implant enriched with FGF2-STAB® in comparison with a tricortical bone autograft used as a gold standard. Twenty-four experimental pigs underwent L2/3 discectomy with implantation of either the tricortical iliac crest bone autograft or the bioresorbable hybrid implant (BHI) followed by lateral intervertebral fixation. The quality of spinal fusion was assessed by micro-computed tomography (micro-CT), biomechanical testing, and histological examination at both 8 and 16 weeks after the surgery. While 8 weeks after implantation, micro-CT analysis demonstrated similar fusion quality in both groups, in contrast, spines with BHI involving inorganic hydroxyapatite and tricalcium phosphate along with organic collagen, oxidized cellulose, and FGF2- STAB® showed a significant increase in a fusion quality in comparison to the autograft group 16 weeks post-surgery (p = 0.023). Biomechanical testing revealed significantly higher stiffness of spines treated with the bioresorbable hybrid implant group compared to the autograft group (p < 0.05). Whilst histomorphological evaluation showed significant progression of new bone formation in the BHI group besides non-union and fibrocartilage tissue formed in the autograft group. Significant osteoinductive effects of BHI based on bioceramics, collagen, oxidized cellulose, and FGF2-STAB® could improve outcomes in spinal fusion surgery and bone tissue regeneration.


2021 ◽  
pp. 219256822110060
Author(s):  
Jun-Xin Chen ◽  
Yun-He Li ◽  
Jian Wen ◽  
Zhen Li ◽  
Bin-Sheng Yu ◽  
...  

Study Design: A biomechanical study. Objectives: The purpose of this study was to investigate the effects of cruciform and square incisions of annulus fibrosus (AF) on the mechanical stability of bovine intervertebral disc (IVD) in multiple degrees of freedom. Methods: Eight bovine caudal IVD motion segments (bone-disc-bone) were obtained from the local abattoir. Cruciform and square incisions were made at the right side of the specimen’s annulus using a surgical scalpel. Biomechanical testing of three-dimensional 6 degrees of freedom was then performed on the bovine caudal motion segments using the mechanical testing and simulation (MTS) machine. Force, displacement, torque and angle were recorded synchronously by the MTS system. P value <.05 was considered statistically significant. Results: Cruciform and square incisions of the AF reduced both axial compressive and torsional stiffness of the IVD and were significantly lower than those of the intact specimens ( P < .01). Left-side axial torsional stiffness of the cruciform incision was significantly higher than a square incision ( P < .01). Neither incision methods impacted flexional-extensional stiffness or lateral-bending stiffness. Conclusions: The cruciform and square incisions of the AF obviously reduced axial compression and axial rotation, but they did not change the flexion-extension and lateral-bending stiffness of the bovine caudal IVD. This mechanical study will be meaningful for the development of new approaches to AF repair and the rehabilitation of the patients after receiving discectomy.


Sign in / Sign up

Export Citation Format

Share Document