scholarly journals Annular Defects Impair the Mechanical Stability of the Intervertebral Disc

2021 ◽  
pp. 219256822110060
Author(s):  
Jun-Xin Chen ◽  
Yun-He Li ◽  
Jian Wen ◽  
Zhen Li ◽  
Bin-Sheng Yu ◽  
...  

Study Design: A biomechanical study. Objectives: The purpose of this study was to investigate the effects of cruciform and square incisions of annulus fibrosus (AF) on the mechanical stability of bovine intervertebral disc (IVD) in multiple degrees of freedom. Methods: Eight bovine caudal IVD motion segments (bone-disc-bone) were obtained from the local abattoir. Cruciform and square incisions were made at the right side of the specimen’s annulus using a surgical scalpel. Biomechanical testing of three-dimensional 6 degrees of freedom was then performed on the bovine caudal motion segments using the mechanical testing and simulation (MTS) machine. Force, displacement, torque and angle were recorded synchronously by the MTS system. P value <.05 was considered statistically significant. Results: Cruciform and square incisions of the AF reduced both axial compressive and torsional stiffness of the IVD and were significantly lower than those of the intact specimens ( P < .01). Left-side axial torsional stiffness of the cruciform incision was significantly higher than a square incision ( P < .01). Neither incision methods impacted flexional-extensional stiffness or lateral-bending stiffness. Conclusions: The cruciform and square incisions of the AF obviously reduced axial compression and axial rotation, but they did not change the flexion-extension and lateral-bending stiffness of the bovine caudal IVD. This mechanical study will be meaningful for the development of new approaches to AF repair and the rehabilitation of the patients after receiving discectomy.

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2732 ◽  
Author(s):  
Daniel Adler ◽  
Michael Akbar ◽  
Anna Spicher ◽  
Stephanie-Alice Goerke ◽  
Werner Schmoelz

Vertebral body replacement is well-established to stabilize vertebral injuries due to trauma or cancer. Spinal implants are mainly manufactured by metallic alloys; which leads to artifacts in radiological diagnostics; as well as in radiotherapy. The purpose of this study was to evaluate the biomechanical data of a novel carbon fiber reinforced polyetheretherketone (CF/PEEK) vertebral body replacement (VBR). Six thoracolumbar specimens were tested in a six degrees of freedom spine tester. In all tested specimens CF/PEEK pedicle screws were used. Two different rods (CF/PEEK versus titanium) with/without cross connectors and two different VBRs (CF/PEEK prototype versus titanium) were tested. In lateral bending and flexion/extension; range of motion (ROM) was significantly reduced in all instrumented states. In axial rotation; the CF/PEEK combination (rods and VBR) resulted in the highest ROM; whereas titanium rods with titanium VBR resulted in the lowest ROM. Two cross connectors reduced ROM in axial rotation for all instrumentations independently of VBR or rod material. All instrumented states in all planes of motion showed a significantly reduced ROM. No significant differences were detected between the VBR materials in all planes of motion. Less rigid CF/PEEK rods in combination with the CF/PEEK VBR without cross connectors showed the smallest reduction in ROM. Independently of VBR and rod material; two cross connectors significantly reduced ROM in axial rotation. Compared to titanium rods; the use of CF/PEEK rods results in higher ROM. The stiffness of rod material has more influence on the ROM than the stiffness of VBR material.


Neurosurgery ◽  
2001 ◽  
Vol 49 (6) ◽  
pp. 1399-1408 ◽  
Author(s):  
Andrzej Maciejczak ◽  
Michał Ciach ◽  
Maciej Radek ◽  
Andrzej Radek ◽  
Jan Awrejcewicz

ABSTRACT OBJECTIVE To determine whether the Cloward technique of cervical discectomy and fusion increases immediate postoperative stiffness of single cervical motion segment after application of interbody dowel bone graft. METHODS We measured and compared the stiffness of single-motion segments in cadaveric cervical spines before and immediately after interbody fusion with the Cloward technique. Changes in range of motion and stiffness of the C5–C6 segment were measured in a bending flexibility test (flexion, extension, lateral bending and axial rotation) before and after a Cloward procedure in 11 fresh-frozen human cadaveric specimens from the 4th through the 7th vertebrae. RESULTS The Cloward procedure produced a statistically significant increase in stiffness of the operated segment in flexion and lateral bending when compared with the intact spine. The less stiff the segment before the operation, the greater the increase in its postoperative flexural stiffness (statistically significant). The Cloward procedure produced nonuniform changes in rotational and extensional stiffness that increased in some specimens and decreased in others. CONCLUSION Our data demonstrate that Cloward interbody fusion increases immediate postoperative stiffness of an operated segment only in flexion and lateral bending in cadaveric specimens in an in vitro environment. Thus, Cloward fusion seems a relatively ineffective method for increasing the stiffness of a construct. This may add to discussion on the use of spinal instrumentation and postoperative management of patients after cervical discectomy, which varies from bracing in hard collars through immobilization in soft collars to no external orthosis.


1999 ◽  
Vol 90 (1) ◽  
pp. 91-98 ◽  
Author(s):  
A. Giancarlo Vishteh ◽  
Neil R. Crawford ◽  
M. Stephen Melton ◽  
Robert F. Spetzler ◽  
Volker K. H. Sonntag ◽  
...  

Object. The authors sought to determine the biomechanics of the occipitoatlantal (occiput [Oc]—C1) and atlantoaxial (C1–2) motion segments after unilateral gradient condylectomy. Methods. Six human cadaveric specimens (skull with attached upper cervical spine) underwent nondestructive biomechanical testing (physiological loads) during flexion—extension, lateral bending, and axial rotation. Axial translation from tension to compression was also studied across Oc—C2. Each specimen served as its own control and underwent baseline testing in the intact state. The specimens were then tested after progressive unilateral condylectomy (25% resection until completion), which was performed using frameless stereotactic guidance. At Oc—C1 for all motions that were tested, mobility increased significantly compared to baseline after a 50% condylectomy. Flexion—extension, lateral bending, and axial rotation increased 15.3%, 40.8%, and 28.1%, respectively. At C1–2, hypermobility during flexion—extension occurred after a 25% condylectomy, during axial rotation after 75% condylectomy, and during lateral bending after a 100% condylectomy. Conclusions. Resection of 50% or more of the occipital condyle produces statistically significant hypermobility at Oc—C1. After a 75% resection, the biomechanics of the Oc—C1 and C1–2 motion segments change considerably. Performing fusion of the craniovertebral junction should therefore be considered if half or more of one occipital condyle is resected.


2013 ◽  
Vol 18 (6) ◽  
pp. 575-581 ◽  
Author(s):  
Prasath Mageswaran ◽  
Robert F. McLain ◽  
Robb Colbrunn ◽  
Tara Bonner ◽  
Elijah Hothem ◽  
...  

Object This study compared the fixing strength and stability achieved by a unilateral plate and screw configuration against a standard cervical fixation plate using a single-level corpectomy and allograft strut graft model. Methods Multidirectional in vitro flexibility tests were performed using a robotic spine testing system. Human cadaveric spines were assessed for spinal stability after vertebral corpectomy and anterior instrumentation. Specimens were mounted cranially and caudally on custom jigs that were then attached to load cells on the robotic system's end effector and base pedestal. C2–T1 spine specimens (n = 6) were tested intact; then after C-5 corpectomy (the vertebral body was excised), allograft placement and anterior plate fixation were performed. The surgeons performed a uniform corpectomy and reconstruction of each specimen in a protocol fashion. Two plates were compared: a unilateral 4-hole cervical plate designed to obtain rigid fixation using 4 convergent fixation screws all placed unilateral to the vertebral midline, and a standard cervical plate with bilateral plate screw configuration. The plate testing sequence was selected at random to limit bias. Fixation screws were matched for length and diameter. Pure moments were applied under load control (maximum 1.8 Nm) in flexion, extension, left/right lateral bending, and left/right axial rotation. Vertebral motion was measured using an optoelectronic system. The mean relative range of motion between C-4 and C-6 was compared among groups using repeated-measures ANOVA (significance level of 0.05). Results In comparing the intact construct and 2 different plates in all planes of motion, only motion in extension (intact vs unilateral plate, p = 0.003; intact vs standard plate, p = 0.001) and left axial rotation (intact vs unilateral plate, p = 0.019) were significantly affected. In terms of immediate cervical stability after 1-level corpectomy and placement of an allograft reconstruction, the unilateral plate showed comparable stiffness to the standard plate in all 3 motion planes (flexion [p = 0.993], extension [p = 0.732], left lateral bending [p = 0.683], right lateral bending [p = 0.546], left axial rotation [p = 0.082], and right axial rotation [p = 0.489]). The unilateral plate showed a trend toward improved stiffness in axial rotation. In no direction did the unilateral configuration prove significantly less stiff than the traditional configuration. Conclusions The unilateral plate design proposed here requires minimal dissection and retraction beyond the midline of tissues susceptible to scar, postoperative pain, and swelling. The authors' study suggests that a unilateral plate can be configured to provide comparable fixation strength and torsional stiffness compared with traditional, widely accepted plate designs.


2014 ◽  
Vol 27 (01) ◽  
pp. 54-61 ◽  
Author(s):  
L. Desquilbet ◽  
D. Fitzpatrick ◽  
F. Bernard ◽  
P. Moissonnier

SummaryObjectives: To study the radiographic characteristics and the biomechanical properties of the sixth and seventh cervical (C6–C7) vertebral motion unit (VMU) with an intact disc, after disc fenestration, and after placement of an intervertebral body spacer (IVBS).Methods: Six cadaveric C6-C7 VMU were retrieved from six Greyhound cadavers. Each VMU was loaded at 3 Nm of torque sequentially in flexion, extension, and in right and left lateral bending. The range-of-motion (ROM) was measured with a Zebris 3D® system. The intervertebral disc cross-sectional area was measured on lateral and ventrodorsal radiographs. Biomechanical testing and radiographic measurements were performed with an intact disc, after disc fenestration, and after IVBS placement. Data were reported as mean ± SD.Results: The intervertebral disc cross-sectional area was significantly decreased after disc fenestration and increased after IVBS placement, but remained significantly smaller than the area of intact disc in some of the tested conditions. The ROM with an intact disc, after disc fenestration and after IVBS placement, in flexion were 11.5° ± 1.0, 15.2° ± 2.3, and 10.9° ± 4.7, respectively, and in extension were 15.6° ± 3.7, 24.7° ± 6.2, 21.9° ± 4.0, respectively. There was a significant increase in extension ROM after disc fenestration. Intervertebral body spacer placement significantly decreased ROM in flexion but ROM in extension was not different from disc fenestration. No significant changes in lateral bending ROM were detected.Clinical significance: The use of an IVBS reduced disc space collapse but did not restore stability of the VMU to normal values in extension after cervical disc fenestration.


2019 ◽  
Vol 19 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Ilyas M Eli ◽  
Michael Karsy ◽  
Darrel S Brodke ◽  
Kent N Bachus ◽  
William T Couldwell ◽  
...  

Abstract BACKGROUND Occipitocervical instability may result from transcondylar resection of the occipital condyle. Initially, patients may be able to maintain a neutral alignment but severe occipitoatlantal subluxation may subsequently occur, with cranial settling, spinal cord kinking, and neurological injury. OBJECTIVE To evaluate the ability of posterior fixation constructs to prevent progression to severe deformity after radical unilateral condylectomy. METHODS Eight human cadaveric specimens (Oc-C2) underwent biomechanical testing to compare stiffness under physiological loads (1.5 N m). A complete unilateral condylectomy was performed to destabilize one Oc-C1 joint, and the contralateral joint was left intact. Unilateral Oc-C1 or Oc-C2 constructs on the resected side and bilateral Oc-C1 or Oc-C2 constructs were tested. RESULTS The bilateral Oc-C2 construct provided the greatest stiffness, but the difference was only statistically significant in certain planes of motion. The unilateral constructs had similar stiffness in lateral bending, but the unilateral Oc-C1 construct was less stiff in axial rotation and flexion-extension than the unilateral Oc-C2 construct. The bilateral Oc-C2 construct was stiffer than the unilateral Oc-C2 construct in axial rotation and lateral bending, but there was no difference between these constructs in flexion-extension. CONCLUSION Patients who undergo a complete unilateral condylectomy require close surveillance for occipitocervical instability. A bilateral Oc-C2 construct provides suitable biomechanical strength, which is superior to other constructs. A unilateral construct decreases abnormal motion but lacks the stiffness of a bilateral construct. However, given that most patients undergo a partial condylectomy and only a small proportion of patients develop instability, there may be scenarios in which a unilateral construct may be appropriate, such as for temporary internal stabilization.


2016 ◽  
Vol 24 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Jin Guo-Xin ◽  
Wang Huan

OBJECT Atlantoaxial instability often requires surgery, and the current methods for fixation pose some risk to vascular and neurological tissues. Thus, new effective and safer methods are needed for salvage operations. This study sought to assess unilateral C-1 posterior arch screws (PASs) and C-2 laminar screws (LSs) combined with 1-side C1–2 pedicle screws (PSs) for posterior C1–2 fixation using biomechanical testing with bilateral C1–2 PSs in a cadaveric model. METHODS Six fresh ligamentous human cervical spines were evaluated for their biomechanics. The cadaveric specimens were tested in their intact condition, stabilization after injury, and after injury at 1.5 Nm of pure moment in 6 directions. The 3 groups tested were bilateral C1–2 PSs (Group A); left side C1–2 PSs with an ipsilateral C-1 PAS + C-2 laminar screw (Group B); and left side C1–2 PSs with a contralateral C-1 PAS + C-2 LS (Group C). During the testing, angular motion was measured using a motion capture platform. Data were recorded, and statistical analyses were performed. RESULTS Biomechanical testing showed that there was no significant difference among the stabilities of these fixation systems in flexion-extension and rotation control. In left lateral bending, the bilateral C1–2 PS group decreased flexibility by 71.9% compared with the intact condition, the unilateral C1–2 PS and ipsilateral PAS+LS group decreased flexibility by 77.6%, and the unilateral C1–2 PS and contralateral PAS+LS group by 70.0%. Each method significantly decreased C1–2 movements in right lateral bending compared with the intact condition, and the bilateral C1–2 PS system was more stable than the C1–2 PS and contralateral PAS+LS system (p = 0.036). CONCLUSIONS A unilateral C-1 PAS + C-2 LS combined with 1-side C-1 PSs provided the same acute stability as the PS, and no statistically significant difference in acute stability was found between the 2 screw techniques. These methods may constitute an alternative method for posterior atlantoaxial fixation.


2005 ◽  
Vol 2 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Patrick W. Hitchon ◽  
Kurt Eichholz ◽  
Christopher Barry ◽  
Paige Rubenbauer ◽  
Aditya Ingalhalikar ◽  
...  

Object. The authors compared the biomechanical performance of the human cadaveric spine implanted with a metallic ball-and-cup artificial disc at L4–5 with the spine's intact state and after anterior discectomy. Methods. Seven human L2—S1 cadaveric spines were mounted on a biomechanical testing frame. Pure moments of 0, 1.5, 3.0, 4.5, and 6.0 Nm were applied to the spine at L-2 in six degrees of motion (flexion, extension, right and left lateral bending, and right and left axial rotation). The spines were tested in the intact state as well as after anterior L4–5 discectomy. The Maverick disc was implanted in the discectomy defect, and load testing was repeated. The artificial disc created greater rigidity for the spine than was present after discectomy, and the spine performed biomechanically in a manner comparable with the intact state. Conclusions. The results indicate that in an in vitro setting, this model of artificial disc stabilizes the spine after discectomy, restoring motion comparable with that of the intact state.


2012 ◽  
Vol 6 (2) ◽  
Author(s):  
Eric Dodgen ◽  
Eric Stratton ◽  
Anton Bowden ◽  
Larry Howell

The spine naturally has a nonlinear force-deflection characteristic which facilitates passive stability, and thus there is a need for spinal implants that duplicate this behavior to provide stabilization when the spine loses stiffness through injury, degeneration, or surgery. Additionally, due to the complexity and variability in the mechanics of spinal dysfunction, implants could potentially benefit from incorporating a customizable stiffness into their design. This paper presents a spinal implant with contact-aided inserts that provide a customizable nonlinear stiffness. An analytical model was utilized to optimize the device design, and the model was then verified using a finite element model. Validation was performed on physical prototypes, first in isolation using a tensile tester and then using cadaveric testing on an in-house spine tester. Testing confirmed the performance of the implant and it was observed that the device increased mechanical stability to the spinal segment in flexion-extension and lateral-bending.


2019 ◽  
Vol 30 (3) ◽  
pp. 314-322 ◽  
Author(s):  
Gilbert Cadena ◽  
Huy T. Duong ◽  
Jonathan J. Liu ◽  
Kee D. Kim

OBJECTIVEC1–2 is a highly mobile complex that presents unique surgical challenges to achieving biomechanical rigidity and fusion. Posterior wiring methods have been largely replaced with segmental constructs using the C1 lateral mass, C1 pedicle, C2 pars, and C2 pedicle. Modifications to reduce surgical morbidity led to the development of C2 laminar screws. The C1 posterior arch has been utilized mostly as a salvage technique, but recent data indicate that this method provides significant rigidity in flexion-extension and axial rotation. The authors performed biomechanical testing of a C1 posterior arch screw (PAS)/C2 pars screw construct, collected morphometric data from a population of 150 CT scans, and performed a feasibility study of a freehand C1 PAS technique in 45 cadaveric specimens.METHODSCervical spine CT scans from 150 patients were analyzed to determine the average C1 posterior tubercle thickness and size of C1 posterior arches. Eight cadavers were used to compare biomechanical stability of intact specimens, C1 lateral mass/C2 pars screw, and C1 PAS/C2 pars screw constructs. Paired comparisons were made using repeated-measures ANOVA and Holm-Sidak tests. Forty-five cadaveric specimens were used to demonstrate the feasibility and safety of the C1 PAS freehand technique.RESULTSMorphometric data showed the average craniocaudal thickness of the C1 posterior tubercle was 12.3 ± 1.94 mm. Eight percent (12/150) of cases showed thin posterior tubercles or midline defects. Average posterior arch thickness was 6.1 ± 1.1 mm and right and left average posterior arch length was 28.7 mm ± 2.53 mm and 28.9 ± 2.29 mm, respectively. Biomechanical testing demonstrated C1 lateral mass/C2 pars and C1 PAS/C2 pars constructs significantly reduced motion in flexion-extension and axial rotation compared with intact specimens (p < 0.05). The C1 lateral mass/C2 pars screw construct provided significant rigidity in lateral bending (p < 0.05). There was no statistically significant difference between the two constructs in flexion-extension, lateral bending, or axial rotation. Of the C1 posterior arches, 91.3% were successfully cannulated using a freehand technique with a low incidence of cortical breach (4.4%).CONCLUSIONSThis biomechanical analysis indicates equivalent stability of the C1 PAS/C2 pars screw construct compared with a traditional C1 lateral mass/C2 pars screw construct. Both provide significant rigidity in flexion-extension and axial rotation. Feasibility testing in 45 cadaveric specimens indicates a high degree of accuracy with low incidence of cortical breach. These findings are supported by a separate radiographic morphometric analysis.


Sign in / Sign up

Export Citation Format

Share Document