Energy conversion efficiency of thermoelectric power generators with cylindrical legs

2021 ◽  
pp. 1-23
Author(s):  
Dandan Pang ◽  
Aibing Zhang ◽  
Zhenfei Wen ◽  
Baolin Wang ◽  
Ji Wang

Abstract Thermoelectric power generators (TEGs) have been attracted increasing attention recently due to their capability of converting waste heat into useful electric energy without hazardous emissions. This paper develops a theoretical model to analyze the thermoelectric performance of TEGs with cylindrical legs. The influence of heat convection loss between lateral surfaces of thermoelectric legs and ambient environment on the energy conversion efficiency is investigated. For the idealized model, closed-form solutions of optimal electric current, maximum power output and maximum energy conversion efficiency are obtained, a new dimensionless impact factor H is introduced to capture the heat convection effect. The impact factor H depends on the ratio of heat conductivity to heat convection coefficient and geometry size of thermoelectric legs, as well as the temperature ratio of heat sink to hot source. The performance can be evaluated by the figure of merit, impact factor H and temperature gradient across the hot source and heat sink for a well-designed TEG with cylindrical legs. For the case of considering contact resistance, it is found that there exists an optimal leg's height for maximum energy conversion efficiency due to the heat convection on lateral surfaces of thermoelectric leg. The proposed theoretical model in this paper will be very helpful in the designing of actual TEG devices.

2017 ◽  
Vol 46 (18) ◽  
pp. 5872-5879 ◽  
Author(s):  
Mandvi Saxena ◽  
Tanmoy Maiti

Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency.


2018 ◽  
Vol 192 ◽  
pp. 01032
Author(s):  
Zhen-Qiang Song ◽  
Sriyuttakrai Sathin ◽  
Wei Li ◽  
Kazuhiro Ohyama ◽  
ShiJie Zhu

The dielectric elastomer generator (VHB 4905, 3M) with diaphragm configuration was investigated with the constant-voltage harvesting scheme in order to investigate its energy harvesting ability. The maximum energy density and energy conversion efficiency is measured to be 65 J/kg and 5.7%, respectively. The relatively low efficiency indicates that higher energy conversion efficiency is impeded by the viscosity of the acrylic elastomer, suggesting that higher conversion efficiency with new low-viscosity elastomer should be available.


2021 ◽  
Vol 926 (1) ◽  
pp. 012091
Author(s):  
W Rahmalia ◽  
E Crespo ◽  
T Usman

Abstract Dye-sensitized solar cell (DSSC) is a third-generation solar cell that has been developed as one of the clean and renewable alternative energies. This study aims to fabricate norbixin-sensitized solar cell (NSSC). Norbixin was obtained from the saponification followed by acidification of bixin and characterized using UV-Visible and FTIR spectroscopy. The solar cell was assembled using anatase-TiO2 semiconductor, KI/I2/MPII in acetonitrile as the electrolyte, and a platinum paste-based cathode. The UV-Visible spectrophotometry analysis results showed three peaks of carotenoid characteristics at 434, 457, and 486 nm. The formation of norbixin was proved by the absence of a spectral peak for the C-O-C ester group of bixin at 1254 dan 1159 cm-1” The cells performance test showed that the maximum energy conversion efficiency of NSSC increased with increasing light intensity up to 0.08 W/cm2. Exposure to the light above this intensity causes a decrease in the maximum energy conversion efficiency due to the temperature factor. The data also showed that the cell assembled was reusable. It still showed relatively good performance until the third day of analysis.


Aerospace ◽  
2003 ◽  
Author(s):  
Mostafa M. Abdalla ◽  
Mary Frecker ◽  
Zafer Gu¨rdal ◽  
Terrence Johnson ◽  
Douglas K. Lindner

Combined optimization of a compliant mechanism and a piezoelectric stack actuator for maximum energy conversion efficiency is considered. The paper presents a system level analysis in which the actuator and the compliant mechanism are mathematically described as linear two-port systems. The combination of stack and compliant mechanism is used to drive a structure, modeled as a mass-spring system. The analysis assumes all components to be free from dissipation, and the piezoelectric stack is driven by an ideal voltage source. Energy conversion efficiency is defined as the ratio of the output mechanical energy to the input electric energy. Theoretical bounds on the system efficiency are obtained. It is shown that the stack actuator can be optimized separately and matched to the specified structure and an optimally designed complaint mechanism. The optimization problem for the compliant mechanism is formulated to maximize a weighted objective function of energy efficiency and stroke amplification. Optimization results are presented for ground structures modeled using frame elements.


Author(s):  
Jasim Uddin ◽  
Jahid M.M. Islam ◽  
Shauk M.M. Khan ◽  
Enamul Hoque ◽  
Mubarak A. Khan

Dye sensitized solar cell (DSSC) shows great promise as an alternative to conventional p-n junction solar cells due to their low fabrication cost and reasonably high efficiency. DSSC was assembled by using natural dye extracted from red amaranth (Amaranthus Gangeticus) as a sensitizer and different catalysts for counter electrode were applied for maximum energy conversion efficiency. Annealing temperature and thickness of electrode were also investigated and optimized. Catalyst, annealing temperature and thickness were optimized by the determination of cell performance considering photoelectrochemical output and measuring current and voltage; then calculating efficiency and other electrical parameters. The experimental results indicated that samples having 40 µm electrode thickness and prepared at 450 °C annealing temperature showed the best performance


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaoliang Liu ◽  
Xiaoming Huang ◽  
Jian Zhang ◽  
Weitao Sun

Purpose The purpose of this study is to investigate the influence mechanism of different interface component surface textures on the ultrasonic motor (USM) output performance. Design/methodology/approach The energy transmission mechanism of the traveling-wave ultrasonic motor 60 (TRUM-60) was numerically and experimentally investigated by fabricating dimple textures with different feature types on the friction material and the stator. Findings Textured friction material can increase the contact range effectively, and thus, can improve the friction characteristics of the interface and the output performance of the TRUM-60. The experimental results verified the expected influence mechanism and demonstrated that the use of either a textured friction material or stator has a very different effect on USM output performance. A textured PI-based friction material improved the TRUM-60 output performance, resulting in a maximum energy conversion efficiency of 57.11%. However, a textured stator degraded the TRUM-60 output performance, resulting in a minimum energy conversion efficiency of only 44.92%. Originality/value The results of this study provide a theoretical foundation for improved USM designs with textured interfaces.


Sign in / Sign up

Export Citation Format

Share Document