Lithium-ion power battery grouping: A multisource data fusion based clustering approach and distributed deployment

Author(s):  
Yudong Wang ◽  
Xiwei Bai ◽  
Chengbao Liu ◽  
Jie Tan

Abstract Consistence of lithium-ion power battery significantly affects the life and safety of battery modules and packs. To improve the consistence, battery grouping is employed, assembling batteries with similar electrochemical characteristics to make up modules and packs. Therefore, grouping process boils down to unsupervised clustering problem. Current used grouping approaches include two aspects, static characteristics based and dynamic based. However, there are three problems. First, the common problem is underutilization of multi-source data. Second, for the static characteristics based, there is grouping failure over time. Third, for the dynamic characteristics based, there is high computational complexity. To solve these problems, we propose a distributed multisource data fusion based battery grouping approach. The proposed approach designs an effective network structure for multisource data fusion, and a self supervised scheme for feature extraction from both static and dynamic multisource data. We apply our approach on real battery modules and test state of health (SOH) after charging-discharging cycles. Experimental results indicate that the proposed scheme can increase SOH of modules by 3.89%, and reduce the inconsistence by 68.4%. Meanwhile, with the distributed deployment the time cost is reduced by 87.9% than the centralized scheme.

2013 ◽  
Vol 28 (12) ◽  
pp. 1291-1295 ◽  
Author(s):  
Ling LIU ◽  
Zhong-Zhi YUAN ◽  
Cai-Xia QIU ◽  
Si-Jie Cheng ◽  
Jin-Cheng LIU

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 983
Author(s):  
Touraj Adhami ◽  
Reza Ebrahimi-Kahrizsangi ◽  
Hamid Reza Bakhsheshi-Rad ◽  
Somayeh Majidi ◽  
Milad Ghorbanzadeh ◽  
...  

In this study, two compounds of TiNb2O7 and Ti2Nb10O29 were successfully synthesized by mechanochemical method and post-annealing as an anode material for lithium-ion batteries. The effect of annealing atmosphere on the morphology, particle size, and electrochemical characteristics of two compounds was investigated. For these purposes, the reactive materials were milled under an argon atmosphere with a certain mole ratio. Subsequently, each sample was subjected to annealing treatment in two different atmospheres, namely argon and oxygen. Phase and morphology identifications were carried out by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) to identify the phases and evaluate the morphology of the synthesized samples. The charging and discharging tests were conducted using a battery-analyzing device to evaluate the electrochemical properties of the fabricated anodes. Annealing in different atmospheres resulted in variable discharge capacities so that the two compounds of TiNb2O7 and Ti2Nb10O29 annealed under the argon atmosphere showed a capacity of 60 and 66 mAh/g after 179 cycles, respectively, which had a lower capacity than their counterpart under the oxygen atmosphere. The final capacity of the annealed samples in the oxygen atmosphere is 72 and 74 mAh/g, respectively.


2021 ◽  
Author(s):  
Yifan Song ◽  
Boyi Xie ◽  
Shuya Lei ◽  
Shaole Song ◽  
Wei Sun ◽  
...  

As a widely used power battery, the scrapping boom of LiFePO4 (LFP) battery is coming. Both pyrometallurgical repair and hydrometallurgical processes have been applied in the recycling of spent LFP...


Wetlands ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 335-348 ◽  
Author(s):  
Steven M. Kloiber ◽  
Robb D. Macleod ◽  
Aaron J. Smith ◽  
Joseph F. Knight ◽  
Brian J. Huberty

1997 ◽  
Vol 496 ◽  
Author(s):  
David J. Derwin ◽  
Kim Kinoshita ◽  
Tri D. Tran ◽  
Peter Zaleski

AbstractSeveral types of carbonaceous materials from Superior Graphite Co. were investigated for lithium ion intercalation. These commercially available cokes, graphitized cokes and graphites have a wide range of physical and chemical properties. The coke materials were investigated in propylene carbonate based electrolytes and the graphitic materials were studied in ethylene carbonate / dimethyl solutions to prevent exfoliation. The reversible capacities of disordered cokes are below 230 mAh / g and those for many highly ordered synthetic (artificial) and natural graphites approached 372 mAh / g (LiC6). The irreversible capacity losses vary between 15 to as much as 200 % of reversible capacities for various types of carbon. Heat treated cokes with the average particle size of 10 microns showed marked improvements in reversible capacity for lithium intercalation. The electrochemical characteristics are correlated with data obtained from scanning electron microscopy (SEM), high resolution transmission electron microscopy (TAM), X - ray diffraction (XRD) and BET surface area analysis. The electrochemical performance, availability, cost and manufacturability of these commercial carbons will be discussed.


Sign in / Sign up

Export Citation Format

Share Document