How intrusive are accelerometers for measuring nonlinear vibrations? A case study on a compressor blade subjected to vibro-impact dynamics

2021 ◽  
pp. 1-31
Author(s):  
Lukas Woiwode ◽  
Florian Müller ◽  
Johann Gross ◽  
Maren Scheel ◽  
Malte Krack

Abstract A characteristic feature of nonlinear vibrations is the energy transfer among different parts or modes of a mechanical system. Moreover, nonlinear vibrations are often non-periodic, even at steady state. To analyze these phenomena experimentally, the vibration response must be measured at multiple locations in a time-synchronous way. For this task, piezoelectric accelerometers are by far the most popular technology. While the effect of attached sensors on linear vibration properties is well-known (mass loading in particular), the purpose of the present work is to assess their intrusiveness on nonlinear vibrations. To this end, we consider a compressor blade that undergoes impacts near the tip for sufficiently large vibrations. We consider two configurations, one in which five triaxial piezoelectric accelerometers are glued to the blade surface and one without sensors attached. In both configurations, the vibration response is measured using a multi-point laser Doppler vibrometer. In the linear case without impacts, the lowest-frequency bending mode merely sees the expected slight frequency shift due to mass loading. In the nonlinear vibro-impact case, unexpectedly, the near-resonant response to harmonic base excitation changes severely both quantitatively and qualitatively. In particular, pronounced strongly modulated responses and period doubling are observed only in the case without attached sensors. We conjecture that this is due to a considerable increase of damping, caused by the sensor cables, affecting mainly the higher-frequency modes.

Author(s):  
M C Levesley ◽  
R Holmes

This paper presents experimental results on the non-linear vibration response of a rotating assembly comprising a rotor, flexible bearing housing and oil film damper. For the latter, due consideration is given to the effects of oil-supply pressure, film-rupture pressure and end sealing. The results are compared with predictions based on the Harmonic Balance principle described in a complementary paper (1).


Author(s):  
C-C Siew ◽  
M Hill ◽  
R Holmes ◽  
M Brennan

This paper presents two efficient methods to calculate the unbalance vibration response of a flexible rotor provided with a squeeze-film damper (SFD) with retainer springs. Both methods are iterative and combine the harmonic balance and receptance approaches. The first method, called the modified iteration method (MIM), is suitable for predicting the three-dimensional mode shapes of a concentric SFD-rotor system. The second method, called the modified harmonic balance method (MHBM), is developed to calculate the non-linear vibration response of a flexible shaft provided with either a concentric or eccentric SFD. The system is also investigated experimentally under different conditions. The predictions computed by these methods are compared with experimental measurements and reasonably good agreement is obtained.


2015 ◽  
Vol 802 ◽  
pp. 208-213
Author(s):  
Tuan Norhayati Tuan Chik ◽  
Shurl Yabi ◽  
Mohd Haziman Wan Ibrahim ◽  
Nor Azizi Yusoff ◽  
Taksiah A. Majid ◽  
...  

Abstract. Vibration in building is one of the important problems which need to consider, especially in designing the floor. Floor vibrations are generally caused by dynamic loads applied particularly by human activity especially walking. Although it is specified as low level amplitude, walking induced vibrations can cause discomfort to human occupants and alarming for a certain items of precision sensitive equipment. This paper investigates the vibration response on floor performance due to one, three and five of people walking. Laser Doppler Vibrometer was used to obtain vibration data when people are walking. Further analysis was carried out by using finite element software package ANSYS to simulate the floor under vibration inputs to obtain natural frequency and mode shapes of the floor structure. The vibration data was then analysed in ModalV analysis to generate the vibration response. Then, the results were checked against the vibration criteria level guideline as a crude tool comparison. As a result, the numbers of people walking were influenced the floor performance, which indicated five peoples walking show the highest response up to ISO level due to vibration compared with one people walking.


2016 ◽  
Vol 16 (7) ◽  
pp. 1617-1622 ◽  
Author(s):  
Fred Fokko Hattermann ◽  
Shaochun Huang ◽  
Olaf Burghoff ◽  
Peter Hoffmann ◽  
Zbigniew W. Kundzewicz

Abstract. In our first study on possible flood damages under climate change in Germany, we reported that a considerable increase in flood-related losses can be expected in a future warmer climate. However, the general significance of the study was limited by the fact that outcome of only one global climate model (GCM) was used as a large-scale climate driver, while many studies report that GCMs are often the largest source of uncertainty in impact modelling. Here we show that a much broader set of global and regional climate model combinations as climate drivers show trends which are in line with the original results and even give a stronger increase of damages.


2016 ◽  
Vol 43 (4) ◽  
pp. 1411-1418 ◽  
Author(s):  
E. Behar ◽  
H. Nilsson ◽  
G. Stenberg Wieser ◽  
Z. Nemeth ◽  
T. W. Broiles ◽  
...  
Keyword(s):  

2003 ◽  
Vol 2003.16 (0) ◽  
pp. 825-826
Author(s):  
Keisuke SASAJIMA ◽  
Jun HIRAI ◽  
Kazutaka KATOU ◽  
Hideo ABE ◽  
Shosaku OHNISHI ◽  
...  

2015 ◽  
Vol 3 (12) ◽  
pp. 7231-7245
Author(s):  
F. F. Hattermann ◽  
S. Huang ◽  
O. Burghoff ◽  
P. Hoffmann ◽  
Z. W. Kundzewicz

Abstract. In our first study on possible flood damages under climate change in Germany, we reported that a considerable increase in flood related losses can be expected in future, warmer, climate. However, the general significance of the study was limited by the fact that outcome of only one Global Climate Model (GCM) was used as large scale climate driver, while many studies report that GCM models are often the largest source of uncertainty in impact modeling. Here we show that a much broader set of global and regional climate model combinations as climate driver shows trends which are in line with the original results and even give a stronger increase of damages.


Sign in / Sign up

Export Citation Format

Share Document