Influence of People Walking on Floor Performance due to Low Level Vibration

2015 ◽  
Vol 802 ◽  
pp. 208-213
Author(s):  
Tuan Norhayati Tuan Chik ◽  
Shurl Yabi ◽  
Mohd Haziman Wan Ibrahim ◽  
Nor Azizi Yusoff ◽  
Taksiah A. Majid ◽  
...  

Abstract. Vibration in building is one of the important problems which need to consider, especially in designing the floor. Floor vibrations are generally caused by dynamic loads applied particularly by human activity especially walking. Although it is specified as low level amplitude, walking induced vibrations can cause discomfort to human occupants and alarming for a certain items of precision sensitive equipment. This paper investigates the vibration response on floor performance due to one, three and five of people walking. Laser Doppler Vibrometer was used to obtain vibration data when people are walking. Further analysis was carried out by using finite element software package ANSYS to simulate the floor under vibration inputs to obtain natural frequency and mode shapes of the floor structure. The vibration data was then analysed in ModalV analysis to generate the vibration response. Then, the results were checked against the vibration criteria level guideline as a crude tool comparison. As a result, the numbers of people walking were influenced the floor performance, which indicated five peoples walking show the highest response up to ISO level due to vibration compared with one people walking.

Author(s):  
E. A. Samokhina ◽  
P. A. Samokhin

Predicting structure properties at the initial design stage is especially important for products that will undergo vibration and impact when used. The paper presents a technique for computing dynamic loads on an aircraft rudder arm when it strikes an arrester as it unfolds in flight. We used a finite element software package to analyse the natural vibrations of the structure.


Author(s):  
Can Gonenli ◽  
Hasan Ozturk ◽  
Oguzhan Das

In this study, the effect of crack on free vibration of a large deflected cantilever plate, which forms the case of a pre-stressed curved plate, is investigated. A distributed load is applied at the free edge of a thin cantilever plate. Then, the loading edge of the deflected plate is fixed to obtain a pre-stressed curved plate. The large deflection equation provides the non - linear deflection curve of the large deflected flexible plate. The thin curved plate is modeled by using the finite element method with a four-node quadrilateral element. Three different aspect ratios are used to examine the effect of crack. The effect of crack and its location on the natural frequency parameter is given in tables and graphs. Also, the natural frequency parameters of the present model are compared with the finite element software results to verify the reliability and validity of the present model. This study shows that the different mode shapes are occurred due to the change of load parameter, and these different mode shapes cause a change in the effect of crack.


2021 ◽  
Vol 11 (7) ◽  
pp. 3190
Author(s):  
Edmundo Schanze ◽  
Gilberto Leiva ◽  
Miguel Gómez ◽  
Alvaro Lopez

Engineering practitioners do not usually include soil–structure interactions in building design; rather, it is common to model and design foundations as embedded joints with joint–based reactions. In some cases, foundation structures are modeled as rigid bodies, embedding the first story into lower vertical elements. Given that the effects of underground floors on the seismic response are not generally included in current building design provisions, it has been little explored in the literature. This work compares and analyzes models to study the effects of different underground stories modeling approaches using earthquake vibration data recorded for the 16–story Alcazar building office in downtown Viña del Mar (Chile). The modeling expands beyond an embedded first story structure to soil with equivalent springs, representing soil–structure interaction (SSI), with varying rigid soil homogeneity. The building was modeled in a finite element software considering only dead load as a static load case because the structure remained in the framing stage when the monitoring system was operating. The instruments registered 72 aftershocks from the 2010 Maule Earthquake, and this study focused on 11 aftershocks of different hypocenters and magnitudes to collect representative information. The comparisons between empirical records and models in this study showed a better fit between the model and the real vibration data for the models that do consider the SSI using horizontal springs attached to the retaining walls of the underground stories. In addition, it was observed that applying a stiffness reduction factor of 0.7 to all elements in deformation verification models for average–height buildings was suitable to analyze the behavior under small earthquakes; better results are obtained embedding the structure in the foundation level than embedding in the street level; the use of horizontal springs with Kuesel’s model with traction for the analysis of the structure yields appropriate results; it is necessary to carefully select the spring constants to be used, paying special attention to the vertical springs. Even though the results presented herein indicate that the use of vertical springs to simulate the SSI of the base slab can result in major differences concerning the real response, it is necessary to obtain more data from instrumentation across a wider variety of structures to continue to evaluate better design and modeling practices. Similarly, further analyses, including nonlinear time–history and high–intensity events, are needed to best regulate building design.


2000 ◽  
Author(s):  
Roger M. Crane ◽  
John W. Gillespie ◽  
Dirk Heider ◽  
Douglas A. Eckel ◽  
Colin P. Ratcliffe

Abstract This paper presents the results of an ongoing investigation into the use of broadband vibration data to monitor the structural integrity and health of an all-composite road bridge. Bridge 1-351 on Business Route 896 in Glasgow, Delaware, was replaced with one of the first state-owned all-composite bridges in the nation in the fall of 1998. The bridge consists of two E-Glass/vinyl ester sandwich core sections (13-ft × 32 ft) joined by a longitudinal joint in the traffic direction. Each sandwich core section consists of a 28-inch deep core and 0.4-0.7-inch thick facesheets. Vibration data were obtained from the upper and lower surfaces of the bridge using a mesh of 1050 test points. From the modal information and the visualization of the data, several aspects of the structural behavior of the bridge were obtained. These characteristics include the interactions between the bridge and abutments; the effectiveness of the longitudinal joint to couple the deck sections; the effectiveness of the core to couple the face sheets; and the structural integrity and dynamic consistency of the entire structure. Mode shapes and natural frequencies were determined and are correlated with theoretical calculations and vibration analyses conducted for this bridge. A novel algorithm using the vibration data is being developed that enables local perturbations sensitive to the state of the material (e.g. manufacturing defects, material degradation or service damage) to be detected and spatially located in the bridge. This technique has been successfully validated for locating damage in 1-D beam structures and is being extended to the 3-D sandwich configuration of the bridge. By coupling this damage detection algorithm with the more conventional modal technique, the quality assurance/quality control and health monitoring of large composite bridge can be obtained.


2021 ◽  
Author(s):  
LUAN TRINH ◽  
PAUL WEAVER

Bamboo poles, and other one-dimensional thin-walled structures are usually loaded under compression, which may also be subject to bending arising from eccentric loading. Many of these structures contain diaphragms or circumferential stiffeners to prevent cross-sectional distortions and so enhance overall load-carrying response. Such hierarchical structures can compartmentalize buckling to local regions in addition to withstanding global buckling phenomena. Predicting the buckling mode shapes of such structures for a range of geometric parameters is challenging due to the interaction of these global and local modes. Abaqus finite element software is used to model thousands of circular hollow tubes with random geometric parameters such that the ratios of radius to periodic length range from 1/3-1/7, the ratio of wall thickness to radius varies from 1/4-1/10. The material used in this study is a type of bamboo, where the Young’s and shear moduli are point-wise orthotropic and gradually increase in magnitude in the radial direction. Under eccentric loads with varying eccentricity, the structures can buckle into a global mode or local modes within an internode, i.e. periodic unit. Moreover, the local modes may contain only one wave or multiple waves in the circumferential direction. As expected, numerical results show that the global mode is more likely to occur in small and thick tubes, whereas the local modes are observed in larger tubes with a smaller number of circumferential waves present in thicker walls. Also, greater eccentricity pushes the local mode domains towards smaller tubes. An efficient classification method is developed herein to identify the domains of each mode shape in terms of radius, wall thickness and eccentricity. Based on linear discriminant analysis, explicit boundary surfaces for the three domains are defined for the obtained data, which can help designers in predicting the mode shapes of tubular structures under axial bending.


Author(s):  
Christian Siewert ◽  
Frank Sieverding ◽  
William J. McDonald ◽  
Manish Kumar ◽  
James R. McCracken

Last stage blade rows of modern low pressure steam turbines are subjected to high static and dynamic loads. The static loads are primarily caused by the centrifugal forces due to the steam turbine’s rotational speed. Dynamic loads can be caused by instationary steam forces, for example. A primary goal in the design of modern and robust blade rows is to prevent High Cycle Fatigue caused by dynamic loads due to synchronous or non-synchronous excitation mechanisms. Therefore, it is important for the mechanical design process to predict the blade row’s vibration response. The vibration response level of a blade row can be limited by means of a damping element coupling concept. Damping elements are loosely assembled into pockets attached to the airfoils. The improvement in the blade row’s structural integrity is the key aspect in the use of a damping element blade coupling concept. In this paper, the vibrational behavior of a last stage blade row with damping elements is analyzed numerically. The calculation results are compared to results obtained from spin pit measurements for this last stage blade row coupled by damping elements.


Author(s):  
Sai Krishna Prabhala ◽  
Sohel Anwar ◽  
Hiroki Yokota ◽  
Stanley Chien

Mechanical loading of the knee is an innovative modality developed for rehabilitation of the knee joint as well as the femur and tibia that are subjected to bone fractures, osteoarthritis and osteoporosis. Loading essentially applies a lateral and periodic force to the knee joint [1]. In this paper, we propose the design of an electro-mechanical device that is capable of applying such dynamic loads. The key variable attributes of this device are the magnitude of the loading force, together with displacement and frequency. A DC motor with a controller actuates the device to produce the necessary force. The loading force is applied to the knee by a set of pads in a restricted linear motion. The operation of the device is approximated using the software package, SimMechanics of MATLAB. The simulations show that the device is capable of producing a suitable loading force with desired frequency. This simulation helps in constructing the device and performing experiments with appropriate frequencies. The device is expected to stimulate the fluids in porous skeletal matrix, resulting in strengthening the knee and bones. It can be employed for clinical trials for necessary evaluations and improvements.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012058
Author(s):  
Chen Wang ◽  
Zhilin Xue ◽  
Yipeng Su ◽  
Binbin Li

Abstract Bayesian FFT algorithm is a popular method to identify modal parameters, e.g., modal frequencies, damping ratios, and mode shapes, of civil structures under operational conditions. It is efficient and provides the identification uncertainty in terms of posterior distribution. However, in utilizing the Bayesian FFT algorithm, it is tedious to manually select frequency bands and initial frequencies. This step requires professional knowledge and costs most of time, which prevents the automation of Bayesian FFT algorithm. Regarding the band selection as an object detection problem, we design a band selection network based on the RetinaNet to automatically select frequency bands and a peak prediction network to predict the initial frequencies. The designed networks are trained using the singular value spectrum of measured ambient vibration data and verified by various data sets. It can achieve the human accuracy with much less operation time, and thus provides a corner stone for the automation of Bayesian FFT algorithm.


2018 ◽  
Vol 18 (12) ◽  
pp. 1850157 ◽  
Author(s):  
Yu-Han Wu ◽  
Xiao-Qing Zhou

Model updating methods based on structural vibration data have been developed and applied to detecting structural damages in civil engineering. Compared with the large number of elements in the entire structure of interest, the number of damaged elements which are represented by the stiffness reduction is usually small. However, the widely used [Formula: see text] regularized model updating is unable to detect the sparse feature of the damage in a structure. In this paper, the [Formula: see text] regularized model updating based on the sparse recovery theory is developed to detect structural damage. Two different criteria are considered, namely, the frequencies and the combination of frequencies and mode shapes. In addition, a one-step model updating approach is used in which the measured modal data before and after the occurrence of damage will be compared directly and an accurate analytical model is not needed. A selection method for the [Formula: see text] regularization parameter is also developed. An experimental cantilever beam is used to demonstrate the effectiveness of the proposed method. The results show that the [Formula: see text] regularization approach can be successfully used to detect the sparse damaged elements using the first six modal data, whereas the [Formula: see text] counterpart cannot. The influence of the measurement quantity on the damage detection results is also studied.


2014 ◽  
Vol 1049-1050 ◽  
pp. 378-382
Author(s):  
Ju Bing Zhang ◽  
Shao Xia Zhang ◽  
Ying Zou

In recent years, the problem of the human-induced bridge vibration has attracted more and more concerns. In this paper , a steel structure footbridge named Shuang'an East in Beijing was taken as the example to collect the whole bridge vibration data and build the finite element model with the finite element software. In addition, this research changes the limitation of considering the pedestrian load as a whole with a traffic flow simulation software, which is based on social force model, applying to reflect the pedestrians' locations during walking. Comparing the simulation data with the the measured data, the vibration serviceability of footbridge will decrease with the increasing of the number of the pedestrians. The analysis results will provide reference for the dynamic characteristic of similar structures.


Sign in / Sign up

Export Citation Format

Share Document