Mechanical Effect Analysis of Interaction between Tunnel Support Structure and Surrounding Rock

Author(s):  
Changqun Zuo ◽  
Jianping Chen ◽  
Shibiao Zhang
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaojun Ma ◽  
Hongyan Guo ◽  
Juyi Hu ◽  
Shuang Cai ◽  
Liang Cheng ◽  
...  

Due to the special mechanical properties of macker rock, problems may be caused easily if the pressure of the surrounding rock calculated from the standard empirical equation is used in the structural design of tunnel support, such as obviously insufficient bearing capacity of the support structure, large deformation, and collapse. Taking the Jiangluling Macker Tunnel in Gonghe-Yushu Highway as an example, the distribution pattern of plastic zone of the surrounding rock and the calculation method and reasonable values of pressure of the surrounding rock are studied in this paper, by means of theoretical analysis, numerical computation, and field measurement data. The results show that the elastic-plastic analysis method is suitable for the pressure of the surrounding rock of macker tunnel. The influence radius of the plastic zone of the surrounding rock can be 32 m, and the lateral pressure of the surrounding rock of the tunnel is equivalent to the vertical pressure. In the absence of test conditions and measured data, the pressure of the surrounding rock can be approximately 0.83 MPa for the purpose of design of tunnel support structure. This conclusion provides technical support for projects in similar conditions.


2018 ◽  
Vol 37 (3) ◽  
pp. 1195-1209
Author(s):  
Qi Wang ◽  
Hongtao Wang ◽  
Rui Pan ◽  
Shucai Li ◽  
Manchao He ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Xuefu Zhang ◽  
Yuanfu Zhou ◽  
Bin Zhang ◽  
Yuanjiang Zhou ◽  
Shiyang Liu

A lot of crystallizations exist on the inner wall of tunnel drainage pipes in Chongqing. Tunnel support structure often bears larger load than usual because the tunnel drainage pipes are blocked easily by the crystals and the groundwater level would rise. In order to investigate what the crystals are, site investigations and laboratory tests of crystals and groundwater were completed. Some valuable results have been obtained. Firstly, the crystallizations are usually discovered in drainage pipe exits of tunnels which are under construction in Chongqing. Furthermore, the results of XRD have confirmed that the crystals are calcite. And calcite morphology could be found in most SEM images. But there are other morphologies in these images other than calcite because calcite is often influenced by some factors, such as important ions in groundwater, pH of groundwater, kinetics effect, and so on. Finally, some steps and solutions to solve blocking of tunnel drainage pipes caused by crystallization are suggested. One of the best solutions is that some special materials which could prevent crystals from being attached to pipes are coated on the inner surface of drainage pipes. The results could contribute to understand the crystallization phenomenon profoundly and help solve the similar situations of tunnel drainage pipe blocking.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Dawid SZURGACZ ◽  
Sergey ZHIRONKIN ◽  
Konrad TRZOP ◽  
Stefan VÖTH ◽  
Leszek SOBIK ◽  
...  

A powered roof support protects people and equipment in the longwall from potential dangerposed by the surrounding rock mass. The study to determine the position of the powered roof supportwas conducted in an active longwall. The research team made measurements of the geometric height ofthe powered roof support structure located in the longwall complex. The main objective of this studywas to determine the position of the powered roof support in actual underground conditions. Theanalysis of the results provided data on whether the assumed height of the longwall was maintainedduring operation of the complex.


2011 ◽  
Vol 255-260 ◽  
pp. 3749-3753 ◽  
Author(s):  
Wei Jian Yu

Since deformations of tunnel nearly mined area are larger, the reasonable support is very important. According to a side working face tunnel nearly mined area in one Mine, FLAC 2D was applied to numerical analyze on two type bolt net supported tunnel of “short bolt and long anchor cable” and “full anchor cable”. The results showed as follows: (1) plastic region of surrounding rock relatively large, which supported by short bolt and long anchor cable. Displacement reaches 27cm, the effect of this type supporting not significant; (2) The supporting of full anchor cable can effectively control deformation of tunnel, displacement less than 5cm, plastic region of surrounding rock also less than 2.3m. So, the supporting of full anchor cable can meet operating requirements.


2021 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Jianxiu Wang ◽  
Ansheng Cao ◽  
Zhao Wu ◽  
Zhipeng Sun ◽  
Xiao Lin ◽  
...  

The temporal and spatial effects of a complicated excavation process are vital for an ultra-shallow buried large-span double-arch tunnel excavated under an expressway in service. Numerical simulations are urgent and necessary to understand the effect of the total construction process. Taking Xiamen Haicang tunnel as a research object, the total excavation process of three pilot tunnels and the three-bench reserved core soil method of an ultra-shallow buried large-span double-arch tunnel with a fault fracture zone under an expressway was simulated using software FLAC3D. The deformation of the surface, surrounding rock, underground pipelines, tunnel support structure and partition wall of the three pilot tunnels and the main tunnel was analyzed, and the dangerous areas and time nodes were obtained. When the tunnel was excavated to the fault fracture zone, the deformation of the surface and surrounding rock increased significantly. The rock and soil within 20 m behind the excavation surface of the pilot tunnel were greatly disturbed by the excavation. During the excavation of the main tunnel, the horizontal displacement of the middle partition wall moved slightly towards the main tunnel excavated first. The research results can provide a reference for the construction design of double-arch tunnels.


2019 ◽  
Vol 277 ◽  
pp. 03014
Author(s):  
Heng Zhou ◽  
Xiaochen Wang ◽  
Haojie Liu ◽  
Yanan Liu ◽  
Chenyang Ma ◽  
...  

Geological hazards such as instability of surrounding rock and leakage of water are easily occurred in subway tunnels crossing water rich sand layers. Based on the principle of fluid solid coupling in porous media, this paper studies the plastic zone distribution of surrounding rock and reinforcement ring, vertical settlement of tunnel vault and water seepage of tunnel before and after grouting reinforcement for water rich sand layer. Considering the compressibility of rock mass, the relationship between porosity, permeability and volume strain is further deduced and simplified. A set of numerical calculation formula is set up to study the change of physical parameters of the water rich sand layer before and after grouting to determine the grouting effect and select the thickness of the best grouting reinforcement ring. The results show that the deformation and water permeability of the tunnel decrease with the increase of the thickness of the grouting reinforcement ring. The thickness of the grouting reinforcement ring is the most reasonable when the thickness of the reinforcing ring reaches a certain value, and the thickness of the grouting reinforcement ring is designed to be 5~6m. The research results have been successfully applied in the grouting project of Qingdao Metro stone elderly bathing beach. The reliability of the numerical simulation is verified by comparing the data from the field monitoring and measurement, providing reference for the related projects.


Sign in / Sign up

Export Citation Format

Share Document