Analysis for WiMAX Uplink Scheduling Algorithms and Proposing the MTD Uplink Scheduling Algorithm

Author(s):  
Satyasrikanth Palle ◽  
Shivashankar

Objective: The demand for Cellular based multimedia services is growing day by day, in order to fulfill such demand the present day cellular networks needs to be upgraded to support excessive capacity calls along with high data accessibility. Analysis of traffic and huge network size could become very challenging issue for the network operators for scheduling the available bandwidth between different users. In the proposed work a novel QoS Aware Multi Path scheduling algorithm for smooth CAC in wireless mobile networks. The performance of the proposed algorithm is assessed and compared with existing scheduling algorithms. The simulation results show that the proposed algorithm outperforms existing CAC algorithms in terms of throughput and delay. The CAC algorithm with scheduling increases end-to-end throughput and decreases end-to-end delay. Methods: The key idea to implement the proposed research work is to adopt spatial reuse concept of wireless sensor networks to mobile cellular networks. Spatial reusability enhances channel reuse when the node pairs are far away and distant. When Src and node b are communicating with each other, the other nodes in the discovered path should be idle without utilizing the channel. Instead the other nodes are able to communicate parallelly the end-to-end throughput can be improved with acceptable delay. Incorporating link scheduling algorithms to this key concept further enhances the end-to-end throughput with in the turnaround time. So, in this research work we have applied spatial reuse concept along with link scheduling algorithm to enhance end-to-end throughput with in turnaround time. The proposed algorithm not only ensures that a connection gets the required bandwidth at each mobile node on its way by scheduling required slots to meet the QoS requirements. By considering the bandwidth requirement of the mobile connections, the CAC module at the BS not only considers the bandwidth requirement but also conforming the constrains of system dealy and jitter are met. Result: To verify the feasibility and effectiveness of our proposed work, with respect to scheduling the simulation results clearly shows the throughput improvement with Call Admission Control. The number of dropped calls is significantly less and successful calls are more with CAC. The percentage of dropped calls is reduced by 9 % and successful calls are improved by 91%. The simulation is also conducted on time constraint and ratio of dropped calls are shown. The total time taken to forward the packets and the ration of dropped calls is less when compared to non CAC. On a whole the CAC with scheduling algorithms out performs existing scheduling algorithms. Conclusion: In this research work we have proposed a novel QoS aware scheduling algorithm that provides QoS in Wireless Cellular Networks using Call Admission Control (CAC). The simulation results show that the end-to-end throughput has been increased by 91% when CAC is used. The proposed algorithm is also compared with existing link scheduling algorithms. The results reveal that CAC with scheduling algorithm can be used in Mobile Cellular Networks in order to reduce packet drop ratio. The algorithm is also used to send the packets within acceptable delay.


2014 ◽  
Vol 519-520 ◽  
pp. 108-113 ◽  
Author(s):  
Jun Chen ◽  
Bo Li ◽  
Er Fei Wang

This paper studies resource reservation mechanisms in the strict parallel computing grid,and proposed to support the parallel strict resource reservation request scheduling model and algorithms, FCFS and EASY backfill analysis of two important parallel scheduling algorithm, given four parallel scheduling algorithms supporting resource reservation. Simulation results of four algorithms of resource utilization, job bounded slowdown factor and the success rate of Advanced Reservation (AR) jobs were studied. The results show that the EASY backfill + firstfit algorithm can ensure QoS of AR jobs while taking into account the performance of good non-AR jobs.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1320
Author(s):  
Vijay Prakash ◽  
Seema Bawa ◽  
Lalit Garg

Workflow scheduling is one of the significant issues for scientific applications among virtual machine migration, database management, security, performance, fault tolerance, server consolidation, etc. In this paper, existing time-based scheduling algorithms, such as first come first serve (FCFS), min–min, max–min, and minimum completion time (MCT), along with dependency-based scheduling algorithm MaxChild have been considered. These time-based scheduling algorithms only compare the burst time of tasks. Based on the burst time, these schedulers, schedule the sub-tasks of the application on suitable virtual machines according to the scheduling criteria. During this process, not much attention was given to the proper utilization of the resources. A novel dependency and time-based scheduling algorithm is proposed that considers the parent to child (P2C) node dependencies, child to parent node dependencies, and the time of different tasks in the workflows. The proposed P2C algorithm emphasizes proper utilization of the resources and overcomes the limitations of these time-based schedulers. The scientific applications, such as CyberShake, Montage, Epigenomics, Inspiral, and SIPHT, are represented in terms of the workflow. The tasks can be represented as the nodes, and relationships between the tasks can be represented as the dependencies in the workflows. All the results have been validated by using the simulation-based environment created with the help of the WorkflowSim simulator for the cloud environment. It has been observed that the proposed approach outperforms the mentioned time and dependency-based scheduling algorithms in terms of the total execution time by efficiently utilizing the resources.


2010 ◽  
Vol 2 (1) ◽  
pp. 34-50 ◽  
Author(s):  
Nikolaos Preve

Job scheduling in grid computing is a very important problem. To utilize grids efficiently, we need a good job scheduling algorithm to assign jobs to resources in grids. The main scope of this article is to propose a new Ant Colony Optimization (ACO) algorithm for balanced job scheduling in the Grid environment. To achieve the above goal, we will indicate a way to balance the entire system load while minimizing the makespan of a given set of jobs. Based on the experimental results, the proposed algorithm confidently demonstrates its practicability and competitiveness compared with other job scheduling algorithms.


2012 ◽  
Vol 433-440 ◽  
pp. 3553-3559 ◽  
Author(s):  
Qing Quan Cui ◽  
Ya Hui Wang ◽  
Dong Wei ◽  
Shao Jun Zhang

Networked Control System is the focus of current research in control field, and the use of a shared network introduces new challenges, therefore, it is significant to research scheduling algorithms for improving the control and schedule performance of NCS. In the paper, according to the challenges existing in scheduling algorithms, a new scheduling algorithm called Switch scheduling is proposed, and the calculation method of switching conditions is also given. In the proposed algorithm, network-induced delay and network utilization are considered to satisfy the different network condition with appropriate scheduling algorithm. The proposed algorithm improves the network utilization and the efficiency of data transmission, and guarantees the system stability. Finally, a simulation example is conducted to validate the feasibility and superiority of the proposed switch scheduling.


2013 ◽  
Vol 742 ◽  
pp. 463-468
Author(s):  
Zhong Min Yao ◽  
Zhao Peng Long ◽  
Qiang Li

GPS positioning system is installed in taxis and most mobile phones support GPS positioning function at present. GPS phones are used in the taxi to achieving intelligent scheduling based on this basis. The taxi intelligent dispatch system based on GPS is proposed, improve the traditional Dijkstra scheduling algorithms by setting taxi maximum reasonable scheduling range, experimental results show that improved algorithms reduce the time complexity and improve scheduling efficiency. Meanwhile the traffic jam information can be sent to the dispatch center and make scheduling algorithm more reasonable by combined with above information.


Sign in / Sign up

Export Citation Format

Share Document