scholarly journals Augmentation of Stagnation Region Heat Transfer due to Turbulence From a DLN Can Combustor

Author(s):  
G. James Van Fossen ◽  
Ronald S. Bunker

Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half scale model of a can-type combustor from a low NOx, ground based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counter clockwise direction (facing downstream). A 5-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36° at the outer edges of the rectangular test section. Hot wire measurements showed test section flow had very high levels of turbulence, around 28.5%, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77% and was about 14% higher than predicted by a previously developed correlation for isotropic grid generated turbulence.

2000 ◽  
Vol 123 (1) ◽  
pp. 140-146 ◽  
Author(s):  
G. James Van Fossen ◽  
Ronald S. Bunker

Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise-averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half-scale model of a can-type combustor from a low NOx, ground-based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane-type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counterclockwise direction (facing downstream). A five-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36 deg at the outer edges of the rectangular test section. Hot-wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid-generated turbulence.


Author(s):  
Evan L. Martin ◽  
Lesley M. Wright ◽  
Daniel C. Crites

Stagnation region heat transfer coefficients are obtained from jet impingement onto a concave surface in this experimental investigation. A single row of round jets impinge on the cylindrical target surface to replicate leading edge cooling in a gas turbine airfoil. A modified, transient lumped capacitance experimental technique was developed (and validated) to obtain stagnation region Nusselt numbers with jet-to-target surface temperature differences ranging from 60°F (33.3°C) to 400°F (222.2°C). In addition to varying jet temperatures, the jet Reynolds number (5000–20000), jet-to-jet spacing (s/d = 2–8), jet-to-target surface spacing (ℓ/d = 2–8), and impingement surface diameter-to-jet diameter (D/d = 3.6, 5.5) were independently varied. This parametric investigation has served to develop and validate a new experimental technique which can be used for investigations involving large temperature differences between the surface and fluid. Furthermore, the study has broadened the range of existing correlations currently used to predict heat transfer coefficients for leading edge, jet impingement.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Evan L. Martin ◽  
Lesley M. Wright ◽  
Daniel C. Crites

Stagnation region heat transfer coefficients are obtained from jet impingement onto a concave surface in this experimental investigation. A single row of round jets impinge on the cylindrical target surface to replicate leading edge cooling in a gas turbine airfoil. A modified, transient lumped capacitance experimental technique was developed (and validated) to obtain stagnation region Nusselt numbers with jet-to-target surface temperature differences ranging from 60 °F (33.3 °C) to 400 °F (222.2 °C). In addition to varying jet temperatures, the jet Reynolds number (5000–20,000), jet-to-jet spacing (s/d = 2–8), jet-to-target surface spacing (ℓ/d = 2–8), and impingement surface diameter-to-jet diameter (D/d = 3.6, 5.5) were independently varied. This parametric investigation has served to develop and validate a new experimental technique, which can be used for investigations involving large temperature differences between the surface and fluid. Furthermore, the study has broadened the range of existing correlations currently used to predict heat transfer coefficients for leading edge jet impingement.


Author(s):  
C. Neil Jordan ◽  
Cassius A. Elston ◽  
Lesley M. Wright ◽  
Daniel C. Crites

Impinging jets are often employed within the leading edge of turbine blades and vanes to combat the tremendous heat loads incurred as the hot exhaust gases stagnate along the exterior of the airfoil. Relative to traditional cylindrical jets, racetrack shaped impinging jets have been shown to produce favorable cooling characteristics within the turbine airfoil. This investigation experimentally and numerically quantifies the cooling characteristics associated with a row of racetrack shaped jets impinging on a concave, cylindrical surface. Detailed Nusselt number distributions are obtained using both a transient liquid crystal technique and commercially available CFD software (Star CCM+ from CD-Adapco). Three geometrical jet inlet and exit conditions are experimentally investigated: a square edge, a partially filleted edge (r/dH,Jet = 0.25), and a fully filleted edge (r/dH,Jet = 0.667). Additionally, to investigate the effect of high crossflow velocities at the inlet of the jet, a portion of the flow supplied to the test apparatus radially bypasses the impingement section. Thus, the mass flow rate into the test section is varied to achieve the desired inlet crossflow conditions and jet Reynolds numbers. As a result, jet Reynolds numbers (ReJet) of 11500 and 23000 are investigated at supply duct Reynolds numbers (ReDuct) of 20000 and 30000. The results are compared to baseline cases where no mass bypasses the test section. Additionally, the relative jet – to – jet spacing (s/dH,Jet) is maintained at 8, the relative jet – to – target surface spacing (z/dH,Jet) is 4, the target surface curvature – to – jet hydraulic diameter (D/dH,Jet) is 5.33, and the relative thickness of the jet plate (t/dH,Jet) is 1.33. Measurements indicate that the addition of fillets at the edges of the jet orifice and the introduction of significant crossflow velocity at the inlet of the jet can significantly degrade the cooling characteristics on the leading edge of the turbine blade. The magnitude of such degradation generally increases with increasing fillet size and inlet crossflow velocity. The V2F model is adequate for predicting the flow field and target surface heat transfer in the absence of inlet crossflow; however, it is believed the turbulence within the jet is overpredicted by the CFD leading to elevated heat transfer coefficients (compared to the experimental results).


Author(s):  
J.-J. Hwang ◽  
C.-S. Cheng ◽  
Y.-P. Tsia

An experimental study has been performed to measure local heat transfer coefficients and static well pressure drops in leading-edge triangular ducts cooled by wall/impinged jets. Coolant provided by an array of equally spaced wall jets is aimed at the leading-edge apex and exits from the radial outlet. Detailed heat transfer coefficients are measured for the two walls forming the apex using transient liquid crystal technique. Secondary-flow structures are visualized to realize the mechanism of heat transfer enhancement by wall/impinged jets. Three right-triangular ducts of the same altitude and different apex angles of β = 30 deg (Duct A), 45 deg (Duct B) and 60 deg (Duct C) are tested for various jet Reynolds numbers (3000≦Rej≦12600) and jet spacings (s/d = 3.0 and 6.0). Results show that an increase in Rej increases the heat transfer on both walls. Local heat transfer on both walls gradually decreases downstream due to the crossflow effect. At the same Rej, the Duct C has the highest wall-averaged heat transfer because of the highest jet center velocity as well as the smallest jet inclined angle. Moreover, the distribution of static pressure drop based on the local through flow rate in the present triangular duct is similar to that that of developing straight pipe flows. Average jet Nusselt numbers on the both walls have been correlated with jet Reynolds number for three different duct shapes.


Author(s):  
David M. Sykes ◽  
Andrew L. Carpenter ◽  
Gregory S. Cole

Microchannels and minichannels have been shown to have many potential applications for cooling high-heat-flux electronics over the past 3 decades. Synthetic jets can enhance minichannel performance by adding net momentum flux into a stream without adding mass flux. These jets are produced because of different flow patterns that emerge during the induction and expulsion stroke of a diaphragm, and when incorporated into minichannels can disrupt boundary layers and impinge on the far wall, leading to high heat transfer coefficients. Many researchers have examined the effects of synthetic jets in microchannels and minichannels with single-phase flows. The use of synthetic jets has been shown to augment local heat transfer coefficients by 2–3 times the value of steady flow conditions. In this investigation, local heat transfer coefficients and pressure loss in various operating regimes were experimentally measured. Experiments were conducted with a minichannel array containing embedded thermocouples to directly measure local wall temperatures. The experimental range extends from transitional to turbulent flows. Local wall temperature measurements indicate that increases of heat transfer coefficient of over 20% can occur directly below the synthetic jet with low exit qualities. In this study, the heat transfer augmentation by using synthetic jets was dictated by the momentum ratio of the synthetic jet to the bulk fluid flow. As local quality was increased, the heat transfer augmentation dropped from 23% to 10%. Surface tension variations had a large effect on the Nusselt number, while variations in inertial forces had a small effect on Nusselt number in this operating region.


Author(s):  
Lindsey V. Randle ◽  
Brian M. Fronk

Abstract In this study, we use infrared thermography to calculate local heat transfer coefficients of top and bottom heated flows of near-critical carbon dioxide in an array of parallel microchannels. These data are used to evaluate the relative importance of buoyancy for different flow arrangements. A Joule heated thin wall made of Inconel 718 applies a uniform heat flux either above or below the horizontal flow. A Torlon PAI test section consists of three parallel microchannels with a hydraulic diameter of 923 μm. The reduced inlet temperature (TR = 1.006) and reduced pressure (PR = 1.03) are held constant. For each heater orientation, the mass flux (520 kgm−2s−2 ≤ G ≤ 800 kgm−2s−2) and heat flux (4.7 Wcm−2 ≤ q″ ≤ 11.1 Wcm−2) are varied. A 2D resistance network analysis method calculates the bulk temperatures and heat transfer coefficients. In this analysis, we divide the test section into approximately 250 segments along the stream-wise direction. We then calculate the bulk temperatures using the enthalpy from the upstream segment, the heat flux in a segment, and the pressure. To isolate the effect of buoyancy, we screen the data to omit conditions where flow acceleration may be important or where relaminarization may occur. In the developed region of the channel, there was a 10 to 15 percent reduction of the local heat transfer coefficients for the upward heating mode compared to downward heating with the same mass and heat fluxes. Thus buoyancy effects should be considered when developing correlations for these types of flow.


Author(s):  
J. E. Kingery ◽  
F. E. Ames

A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs in these regions providing a useful set of data to ground the prediction of transition onset and length over a wide range of Reynolds numbers and turbulence intensity and scales.


Author(s):  
F. W. Staub

To improve the reliability of turbine disc life prediction, experimental verification is required of analytical tools that calculate the flow field and heat transfer coefficients in turbine-stator cavities. As a first step, a full-scale model of the forward cavity of a typical aircraft gas turbine was employed using a high-molecular-weight gas (Refrigerant-12) at ambient pressure and temperature conditions to match the dimensionless parameters at engine conditions. The cavity temperature and selected cavity velocity profiles were measured using electrical heat addition with liquid crystal surface temperature measurement to obtain local disc heat transfer coefficients. A part of the cooling gas flow was added through a rotating inner seal with the remainder added at high angular swirl in the direction of rotation at a larger radius. Rotational Reynolds numbers were varied up to 9×106 with the radial Reynolds number variation up to 9000. A first-order comparison is given of the velocity distribution and disc heat transfer coefficients calculated by a CFD code and the measured values. The disc heat transfer coefficients can be dominated by the inlet swirl flow or by the rotor speed, depending on whether the coolant flow is greater or smaller than that generated by the rotor alone acting as a free disc.


Author(s):  
Kwang-Hyun Bang ◽  
Kun-Eui Hong ◽  
In-Seon Hwang

This paper reports an experimental study on flow boiling of water in a minichannel. Flow boiling heat transfer coefficients and pressure drops were measured and the data were compared with existing correlations. The effect of pressure was the major objectives in this study and the range of pressure was 1 to 18 bars. The experimental apparatus consisted mainly of a minichannel test section, gear pump, pre-heater, pressurizer, condenser and evaporator. The evaporator was used for variation of vapor quality at the inlet of test section. The pressurizer controls the desired system pressure. The test section is a round tube of 1.73 mm inside diameter, made of 316 stainless steel. The test section and the evaporator tubes were heated by DC electric current through the tubes. The measured flow boiling heat transfer coefficients showed two distinct regions; relatively high heat transfer coefficients at low vapor quality and lower heat transfer coefficients at higher vapor quality. This observation implies the change of flow regime, slug to annular flow. Comparisons of the experimental data and the prediction of correlations (Gungor & Winterton, 1987; Tran et al., 1996; Kandlikar, 2003) showed large discrepancy in both regions.


Sign in / Sign up

Export Citation Format

Share Document