Transient Temperatures and Thermal Stress Problems in Small Gas Turbines

Author(s):  
Robert R. van Nimwegen

A discussion is given of the steady and transient temperature problems associated with the design of small gas turbines and starter equipment. The transient heat-conduction equation is given in differential and finite-difference form. Boundary conditions of convective heat transfer, radiation and prescribed temperatures are discussed. Several methods for solution of these equations in irregularly shaped bodies are given. Examples of solutions of typical temperature problems in small gas turbines are shown. Solution by means of an electrolytic tank, analog computer and a digital computer are discussed, with the advantages and disadvantages of each method given.

Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2617-2628
Author(s):  
K.Y. Kung ◽  
Man-Feng Gong ◽  
H.M. Srivastava ◽  
Shy-Der Lin

The principles of superposition and separation of variables are used here in order to investigate the analytical solutions of a certain transient heat conduction equation. The structure of the transient temperature appropriations and the heat-transfer distributions are summed up for a straight mix of the results by means of the Fourier-Bessel arrangement of the exponential type for the investigated partial differential equation.


Author(s):  
Fangming Jiang ◽  
Dengying Liu ◽  
Jim S.-J. Chen ◽  
Richard S. Cohen

A novel experimental method was developed to measure the rapid transient temperature variations (heating rate > 107 K/s) of porous samples heated by high surface heat fluxes. With a thin film (0.1 μm thick) resistance thermometer of platinum as the temperature sensor and a super-high speed digital oscilloscope (up to 100 MHz) as the data recorder, rapid transient temperature variation in a porous material heated by a microsecond laser pulse of high power density is measured. Experimental results indicate that for high heat transfer cases (q′ > 109 W/m2) with short durations (5 – 20 μs) of heating, non-Fourier heat conduction behaviors appear. The non-Fourier hyperbolic heat conduction model and the traditional Fourier parabolic model are employed to simulate this thermal case respectively and the FDM is used to perform the numerical analysis. The hyperbolic model predicts thermal wave behavior in qualitative agreement with the experimental data.


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Rajai S. Alassar

The transient heat conduction from two parallel isothermal cylinders is studied using the naturally fit bipolar cylindrical coordinates system. The energy equation is expanded in a Fourier series using appropriate basis functions to eliminate one of the physical coordinates. The resulting modes of the expansion are solved using a finite difference scheme. It is shown that, as is the case with a single isothermal cylinder in an infinite medium, steady states for two isothermal cylinders are not possible and heat transfer changes indefinitely with time.


2004 ◽  
Vol 27 (4) ◽  
pp. 319-339 ◽  
Author(s):  
Sutthisak Phongthanapanich ◽  
Pramote Dechaumphai

A finite element method is combined with the Delaunay triangulation and an adaptive remeshing technique to solve for solutions of both steady-state and transient heat conduction problems. The Delaunay triangulation and the adaptive remeshing technique are explained in detail. The solution accuracy and the effectiveness of the combined procedure are evaluated by heat transfer problems that have exact solutions. These problems include steady-state heat conduction in a square plate subjected to a highly localized surface heating, and a transient heat conduction in a long plate subjected to a moving heat source. The examples demonstrate that the adaptive remeshing technique with the Delaunay triangulation significantly reduce the number of the finite elements required for the problems and, at the same time, increase the analysis solution accuracy as compared to the results produced using uniform finite element meshes.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ryoichi Chiba

An analytical solution is derived for one-dimensional transient heat conduction in a composite slab consisting of n layers, whose heat transfer coefficient on an external boundary is an arbitrary function of time. The composite slab, which has thermal contact resistance at n-1 interfaces, as well as an arbitrary initial temperature distribution and internal heat generation, convectively exchanges heat at the external boundaries with two different time-varying surroundings. To obtain the analytical solution, the shifting function method is first used, which yields new partial differential equations under conventional types of external boundary conditions. The solution for the derived differential equations is then obtained by means of an orthogonal expansion technique. Numerical calculations are performed for two composite slabs, whose heat transfer coefficient on the heated surface is either an exponential or a trigonometric function of time. The numerical results demonstrate the effects of temporal variations in the heat transfer coefficient on the transient temperature field of composite slabs.


Open Physics ◽  
2013 ◽  
Vol 11 (8) ◽  
Author(s):  
Partner Ndlovu ◽  
Rasselo Moitsheki

AbstractSome new conservation laws for the transient heat conduction problem for heat transfer in a straight fin are constructed. The thermal conductivity is given by a power law in one case and by a linear function of temperature in the other. Conservation laws are derived using the direct method when thermal conductivity is given by the power law and the multiplier method when thermal conductivity is given as a linear function of temperature. The heat transfer coefficient is assumed to be given by the power law function of temperature. Furthermore, we determine the Lie point symmetries associated with the conserved vectors for the model with power law thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document