Economic Evaluation Technique of Selecting Turbines for Natural Gas Pipelines

1978 ◽  
Author(s):  
T. E. Hajnal

Designers of natural gas transmission systems often have to make recommendations as to the type, size, and number of turbines to be purchased and installed either on new pipelines or on expanding existing systems. This paper describes the economic evaluation technique which is being used by TransCanada PipeLines, of selecting turbines for natural gas transmission pipeline systems. The technique is based on comparing the present worths of annual owning and operating costs associated with the turbines considered for installation.

Author(s):  
Terry Boss ◽  
J. Kevin Wison ◽  
Charlie Childs ◽  
Bernie Selig

Interstate natural gas transmission pipelines have performed some standardized integrity management processes since the inception of ASME B3.18 in 1942. These standardized practices have been always preceded by new technology and individual company efforts to improve processes. These standardized practices have improved through the decades through newer consensus standard editions and the adoption of pipeline safety regulations (49 CFR Part 192). The Pipeline Safety Improvement Act which added to the list of these improved practices was passed at the end of 2002 and has been recently reaffirmed in January of 2012. The law applies to natural gas transmission pipeline companies and mandates additional practices that the pipeline operators must conduct to ensure the safety and integrity of natural gas pipelines with specific safety programs. Central to the 2002 Act is the requirement that pipeline operators implement an Integrity Management Program (IMP), which among other things requires operators to identify so-called High Consequence Areas (HCAs) on their systems, conduct risk analyses of these areas, and perform baseline integrity assessments and reassessments of each HCA, according to a prescribed schedule and using prescribed methods. The 2002 Act formalized, expanded and standardized the Integrity Management (IM) practices that individual operators had been conducting on their pipeline systems. The recently passed 2012 Pipeline Safety Act has expanded this effort to include measures to improve the integrity of the total transmission pipeline system. In December 2010, INGAA launched a voluntary initiative to enhance pipeline safety and communicate the results to stakeholders. The efforts are focused on analyzing data that measures the effectiveness of safety and integrity practices, detects successful practices, identifies opportunities for improvement, and further focuses our safety performance by developing an even more effective integrity management process. During 2011, a group chartered under the Integrity Management Continuous Improvement initiative(IMCI) identified information that may be useful in understanding the safety progress of the INGAA membership as they implemented their programs that were composed of the traditional safety practices under DOT Part 192, the PHMSA IMP regulations that were codified in 2004 and the individual operator voluntary programs. The paper provides a snapshot, above and beyond the typical PHMSA mandated reporting, of the results from the data collected and analyzed from this integrity management activity on 185,000 miles of natural gas transmission pipelines operated by interstate natural gas transmission pipelines. Natural gas transmission pipeline companies have made significant strides to improve their systems and the integrity and safety of their pipelines in and beyond HCAs. Our findings indicate that over the course of the data gathering period, pipeline operators’ efforts are shown to be effective and are resulting in improved pipeline integrity. Since the inception of the IMP and the expanded voluntary IM programs, the probability of leaks in the interstate natural gas transmission pipeline system continues on a downward slope, and the number of critical repairs being made to pipe segments that are being reassessed under integrity programs, both mandated and voluntary, are decreasing dramatically. Even with this progress, INGAA members committed in 2011 to embarking on a multi-year effort to expand the width and depth of integrity management practices on the interstate natural gas transmission pipeline systems. A key component of that extensive effort is to design metrics to measure the effectiveness to achieve the goals of that program. As such, this report documents the performance baseline before the implementation of the future program.


Author(s):  
Mohammad Fakhroleslam ◽  
Ramin Bozorgmehry Boozarjomehry ◽  
Ali M. Sahlodin ◽  
Gürkan Sin ◽  
Seyed Soheil Mansouri

Energy ◽  
2018 ◽  
Vol 162 ◽  
pp. 853-870 ◽  
Author(s):  
Weichao Yu ◽  
Shangfei Song ◽  
Yichen Li ◽  
Yuan Min ◽  
Weihe Huang ◽  
...  

Author(s):  
Toby Fore ◽  
Stefan Klein ◽  
Chris Yoxall ◽  
Stan Cone

Managing the threat of Stress Corrosion Cracking (SCC) in natural gas pipelines continues to be an area of focus for many operating companies with potentially susceptible pipelines. This paper describes the validation process of the high-resolution Electro-Magnetic Acoustical Transducer (EMAT) In-Line Inspection (ILI) technology for detection of SCC prior to scheduled pressure tests of inspected line pipe valve sections. The validation of the EMAT technology covered the application of high-resolution EMAT ILI and determining the Probability Of Detection (POD) and Identification (POI). The ILI verification process is in accordance to a API 1163 Level 3 validation. It is described in detail for 30″ and 36″ pipeline segments. Both segments are known to have an SCC history. Correlation of EMAT ILI calls to manual non-destructive measurements and destructively tested SCC samples lead to a comprehensive understanding of the capabilities of the EMAT technology and the associated process for managing the SCC threat. Based on the data gathered, the dimensional tool tolerances in terms of length and depth are derived.


Author(s):  
Aleksandar Tomic ◽  
Shahani Kariyawasam

A lethality zone due to an ignited natural gas release is often used to characterize the consequences of a pipeline rupture. A 1% lethality zone defines a zone where the lethality to a human is greater than or equal to 1%. The boundary of the zone is defined by the distance (from the point of rupture) at which the probability of lethality is 1%. Currently in the gas pipeline industry, the most detailed and validated method for calculating this zone is embodied in the PIPESAFE software. PIPESAFE is a software tool developed by a joint industry group for undertaking quantitative risk assessments of natural gas pipelines. PIPESAFE consequence models have been verified in laboratory experiments, full scale tests, and actual failures, and have been extensively used over the past 10–15 years for quantitative risk calculations. The primary advantage of using PIPESAFE is it allows for accurate estimation of the likelihood of lethality inside the impacted zone (i.e. receptors such as structures closer to the failure are subject to appropriately higher lethality percentages). Potential Impact Radius (PIR) is defined as the zone in which the extent of property damage and serious or fatal injury would be expected to be significant. It corresponds to the 1% lethality zone for a natural gas pipeline of a certain diameter and pressure when thermal radiation and exposure are taken into account. PIR is one of the two methods used to identify HCAs in US (49 CFR 192.903). Since PIR is a widely used parameter and given that it can be interpreted to delineate a 1% lethality zone, it is important to understand how PIR compares to the more accurate estimation of the lethality zones for different diameters and operating pressures. In previous internal studies, it was found that PIR, when compared to the more detailed measures of the 1% lethality zone, could be highly conservative. This conservatism could be beneficial from a safety perspective, however it is adding additional costs and reducing the efficiency of the integrity management process. Therefore, the goal of this study is to determine when PIR is overly conservative and to determine a way to address this conservatism. In order to assess its accuracy, PIR was compared to a more accurate measure of the 1% lethality zone, calculated by PIPESAFE, for a range of different operating pressures and line diameters. Upon comparison of the distances calculated through the application of PIR and PIPESAFE, it was observed that for large diameters pipelines the distances calculated by PIR are slightly conservative, and that this conservativeness increases exponentially for smaller diameter lines. The explanation for the conservatism of the PIR for small diameter pipelines is the higher wall friction forces per volume transported in smaller diameter lines. When these higher friction forces are not accounted for it leads to overestimation of the effective outflow rate (a product of the initial flow rate and the decay factor) which subsequently leads to the overestimation of the impact radius. Since the effective outflow rate is a function of both line pressure and diameter, a simple relationship is proposed to make the decay factor a function of these two variables to correct the excess conservatism for small diameter pipelines.


Author(s):  
Amir Ahmadipur ◽  
Alexander McKenzie-Johnson ◽  
Ali Ebrahimi ◽  
Anthony H. Rice

Abstract This paper presents a case study of a landslide with the potential to affect four operating high-pressure natural gas pipelines located in the south-central US state of Mississippi. This case study follows a landslide hazard management process: beginning with landslide identification, through pipeline monitoring using strain gauges with an automated early alert system, to detection of landslide movement and its effects on the pipeline, completion of a geotechnical subsurface investigation, conceptual geotechnical mitigation planning, landslide stabilization design and construction, and stress relief excavation. Each step of the landslide hazard management process is described in this case study.


Sign in / Sign up

Export Citation Format

Share Document