scholarly journals Streakline Flow Visualization Study of a Horseshoe Vortex in a Large-Scale, Two-Dimensional Turbine Stator Cascade

1980 ◽  
Author(s):  
R. E. Gaugler ◽  
L. M. Russell

Neutrally buoyant helium-filled bubbles were observed as they followed the streamlines in a horseshoe vortex system around the vane leading edge in a large-scale, two-dimensional, turbine stator cascade. Inlet Reynolds number, based on true chord, ranged between 1.0 × 10 ⅝ to 3.0 × 10 ⅝. Bubbles were introduced into the endwall boundary layer through a slot upstream of the vane leading edge. The paths of the bubbles were recorded photographically as streaklines on 16-mm movie film. Individual frames from the film have been selected, and overlayed to show the details of the horseshoe vortex around the leading edge, the transport of the vortex across the passage near the leading edge is clearly seen when compared to the streaks formed by bubbles carried in the main stream. Limiting streamlines on the endwall surface were traced by the flow of oil drops.

1965 ◽  
Vol 22 (3) ◽  
pp. 587-598 ◽  
Author(s):  
L. Sowerby

A series expansion is derived for the three-dimensional boundary-layer flow over a flat plate, arising from a general main-stream flow over the plate. The series involved are calculated as far as terms of order ξ2, where ξ is a non-dimensional parameter defining distance measured from the leading edge of the plate. The results are applied to an example in which the main stream arises from the disturbance of a uniform stream by a circular cylinder mounted downstream from the leading edge of the plate, the axis of the cylinder being normal to the plate. Calculations are made for shear stress components on the plate, and for the deviation of direction of the limiting streamlines from those in the main stream.


2002 ◽  
Vol 124 (2) ◽  
pp. 167-175 ◽  
Author(s):  
G. A. Zess ◽  
K. A. Thole

With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flowfield measurements were performed in a large-scale, linear, vane cascade. The flowfield measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flow-field results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.


1994 ◽  
Vol 116 (1) ◽  
pp. 1-13 ◽  
Author(s):  
M. F. Blair

An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer was measured for both the full-span suction and pressure surfaces of the airfoil and for the hub endwall surface. The objective of this program was to document the effects of flow three dimensionality on the heat transfer in a rotating blade row (versus a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage, and the leading-edge horseshoe vortex system. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth-wall and rough-wall finite-difference two-dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three-dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100 percent over midspan values) produced on the airfoil suction surface by the secondary flows and tip-leakage vortices and on the hub endwall by the leading edge horseshoe vortex system.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Teng Cao ◽  
Tadashi Kanzaka ◽  
Liping Xu ◽  
Tobias Brandvik

Abstract In this paper, an unsteady tip leakage flow phenomenon is identified and investigated in a centrifugal compressor with a vaneless diffuser at near-stall conditions. This phenomenon is associated with the inception of a rotating instability in the compressor. The study is based on numerical simulations that are supported by experimental measurements. The study confirms that the unstable flow is governed by a Kelvin–Helmholtz type instability of the shear layer formed between the main-stream flow and the tip leakage flow. The shear layer instability induces large-scale vortex roll-up and forms vortex tubes, which propagate circumferentially, resulting in measured pressure fluctuations with short wavelength and high amplitude which rotate at about half of the blade speed. The 3D vortex tube is also found to interact with the main blade leading edge, causing the reduction of the blade loading identified in the experiment. The paper also reveals that the downstream volute imposes a once-per-rev circumferential nonuniform back pressure at the impeller exit, inducing circumferential loading variation at the impeller inducer, and causing circumferential variation in the unsteady tip leakage flow.


Author(s):  
G. A. Zess ◽  
K. A. Thole

With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flow field measurements were performed in a large-scale, linear, vane cascade. The flow field measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flowfield results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.


Author(s):  
Khaled J. Hammad

Particle Image Velocimetry (PIV) was used to study the flow structure and turbulence, upstream, over, and downstream a shallow open cavity. Three sets of PIV measurements, corresponding to a turbulent incoming boundary layer and a cavity length-to-depth ratio of four, are reported. The cavity depth based Reynolds numbers were 21,000; 42,000; and 54,000. The selected flow configuration and well characterized inflow conditions allow for straightforward assessment of turbulence models and numerical schemes. All mean flow field measurements display a large flow recirculation region, spanning most of the cavity and a smaller, counter-rotating, secondary vortex, immediately downstream of the cavity leading edge. The Galilean decomposed instantaneous velocity vector fields, clearly demonstrate two distinct modes of interaction between the free shear and the cavity trailing edge. The first corresponds to a cascade of vortical structures emanating from the tip of the leading edge of the cavity that grow in size as they travel downstream and directly interact with the trailing edge, i.e., impinging vortices. The second represents vortices that travel above the trailing edge of the cavity, i.e., non-impinging vortices. In the case of impinging vortices, a strong, large scale region of recirculation forms inside the cavity and carries the flow disturbances, arising from the impingement of vortices on the trailing edge of the cavity, upstream in a manner that interacts with and influences the flow as it separates from the cavity leading edge.


Author(s):  
D. R. Sabatino ◽  
C. R. Smith

The spatial-temporal flow-field and associated surface heat transfer within the leading edge, end-wall region of a bluff body were examined using both particle image velocimetry and thermochromic liquid crystal temperature measurements. The horseshoe vortex system in the end-wall region is mechanistically linked to the upstream boundary layer unsteadiness. Hairpin vortex packets, associated with turbulent boundary layer bursting behavior, amalgamate with the horseshoe vortex resulting in unsteady strengthening and streamwise motion. The horseshoe vortex unsteadiness exhibits two different natural frequencies: one associated with the transient motion of the horseshoe vortex, and the other with the transient surface heat transfer. Comparable unsteadiness occurs in the end-wall region of the more complex airfoil geometry of a linear turbine cascade. To directly compare the horseshoe vortex behavior around a turning airfoil to that of a simple bluff body, a length scale based on the maximum airfoil thickness is proposed.


1959 ◽  
Vol 63 (588) ◽  
pp. 724-730 ◽  
Author(s):  
T. W. F. Moore

Recent Researches have led to some possible explanations for thin aerofoil stalling behaviour. Apart from the Owen Klanfer criterion these are the reverse flow breakdown hypothesis of McGregor and Wallis's turbulent separation theory.This note describes simple theoretical boundary layer calculations which indicate the feasibility of Wallis's hypothesis. In addition the results of some experiments on a thin two-dimensional aerofoil with various leading edge configurations with Reynolds number, based on model chord, of 1.8 million and 1 million support either of these hypotheses, depending on the leading edge configuration. It is concluded that thin aerofoil stall can occur broadly, through either of the suggested mechanisms, depending on conditions in the nose region.


Author(s):  
Stefan Becker ◽  
Donald M. McEligot ◽  
Edmond Walsh ◽  
Eckart Laurien

New results are deduced to assess the validity of proposed transition indicators when applied to situations other than boundary layers on smooth surfaces. The geometry employed utilizes a two-dimensional square rib to disrupt the boundary layer flow. The objective is to determine whether some available criteria are consistent with the present measurements of laminar recovery and transition for the flow downstream of this rib. For the present data — the proposed values of thresholds for transition in existing literature that are based on the freestream turbulence level at the leading edge are not reached in the recovering laminar run but they are not exceeded in the transitioning run either. Of the pointwise proposals examined, values of the suggested quantity were consistent for three of the criteria; that is, they were less than the threshold in laminar recovery and greater than it in the transitioning case.


Sign in / Sign up

Export Citation Format

Share Document