An Experimental Study Heat Transfer in a Large-Scale Turbine Rotor Passage

1994 ◽  
Vol 116 (1) ◽  
pp. 1-13 ◽  
Author(s):  
M. F. Blair

An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer was measured for both the full-span suction and pressure surfaces of the airfoil and for the hub endwall surface. The objective of this program was to document the effects of flow three dimensionality on the heat transfer in a rotating blade row (versus a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage, and the leading-edge horseshoe vortex system. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth-wall and rough-wall finite-difference two-dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three-dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100 percent over midspan values) produced on the airfoil suction surface by the secondary flows and tip-leakage vortices and on the hub endwall by the leading edge horseshoe vortex system.

Author(s):  
Michael F. Blair

An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large–scale, ambient temperature, rotating turbine model. Meat transfer was measured for both the full–span suction and pressure surfaces of the airfoil as well as for the hub endwall surface. The objective of this program was to document the effects of flow three–dimensionality on the heat transfer in a rotating blade row (vs. a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage and the leading–edge horseshoe vortexsystem. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth–wall and rough–wall finite–difference two dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100% over midspan values) produced on the airfoil suction surface by the secondary flows and tip–leakage vortices and on the hub endwall by the leading–edge horseshoe vortex system.


Author(s):  
Yumin Xiao ◽  
R. S. Amano

A numerical study has been performed to predict a three-dimensional turbulent flow and end-wall heat transfer in a blade passage. The complex three-dimensional flow in the end-wall region has an important impact on the local heat transfer. The leading edge horseshoe vortex, the leading edge corner vortices, the passage vortex, and the trailing edge wake cause large variations in the entire end-wall region. The heat transfer distributions in the end-wall region are calculated and the mechanism for the high heat transfer region has been revealed. The calculations show that the algebraic turbulence model lacks the ability to predict the heat transfer in the transition region, but it is valid in other flow region. The local high heat transfer downstream of the trailing edge is enhanced by the wake downstream of the trailing edge. The horseshoe vortex results a high heat transfer region near the leading edge and induces the leading edge corner vortices which cause high heat transfer on the end-wall at both sides of blade end-wall corner.


1984 ◽  
Vol 106 (1) ◽  
pp. 168-172 ◽  
Author(s):  
R. E. Gaugler ◽  
L. M. Russell

Various flow visualization techniques were used to define the secondary flows near the endwall in a large scale turbine vane cascade. The cascade was scaled up from one used to generate endwall heat transfer data under a joint NASA-USAF contract. A comparison of the visualized flow patterns and the measured Stanton number distributions was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a new technique using permanent marker pen ink dots and synthetic wintergreen oil. For the first time, details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distributions. Near the cascade entrance, there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious.


1980 ◽  
Author(s):  
R. E. Gaugler ◽  
L. M. Russell

Neutrally buoyant helium-filled bubbles were observed as they followed the streamlines in a horseshoe vortex system around the vane leading edge in a large-scale, two-dimensional, turbine stator cascade. Inlet Reynolds number, based on true chord, ranged between 1.0 × 10 ⅝ to 3.0 × 10 ⅝. Bubbles were introduced into the endwall boundary layer through a slot upstream of the vane leading edge. The paths of the bubbles were recorded photographically as streaklines on 16-mm movie film. Individual frames from the film have been selected, and overlayed to show the details of the horseshoe vortex around the leading edge, the transport of the vortex across the passage near the leading edge is clearly seen when compared to the streaks formed by bubbles carried in the main stream. Limiting streamlines on the endwall surface were traced by the flow of oil drops.


Author(s):  
A. Arisi ◽  
D. Mayo ◽  
Z. Li ◽  
W. F. Ng ◽  
H. K. Moon ◽  
...  

A detailed experimental and numerical study has been conducted to investigate the endwall heat transfer characteristics on a nozzle platform that has been misaligned with the combustor exit, resulting in a backward facing step at the nozzle inlet. The study was carried out under transonic engine representative conditions with an exit Mach number of 0.85 (Reexit = 1.5 × 106), and an inlet turbulence intensity of 16%. A transient infrared thermography technique coupled with endwall static pressure ports, were used to map the endwall surface heat transfer and aerodynamic characteristics respectively. A numerical study was also conducted by solving the steady state Reynolds Averaged Navier Stokes (RANS) equations using the commercial CFD solver ANSYS Fluent v.15. The numerical results were then validated by comparing to experiment data and good agreement was observed. The results reveal that the classical endwall secondary flows (endwall crossflows, horseshoe and passage vortices) are weakened and a unique auxiliary vortex system develops within the passage and interacts with the weakened horseshoe vortex. It is observed that heat transfer in the first half of the passage endwall is heavily influenced by this auxiliary vortex system. Heat transfer augmentation of between 15% and 40% was also observed throughout the NGV endwall. Furthermore, the auxiliary vortex system results in a delayed cross-passage migration of the horseshoe vortex which consequently results in large lateral gradient in heat transfer downstream of the throat.


2020 ◽  
Author(s):  
V. L. Kocharin ◽  
A. A. Yatskikh ◽  
D. S. Prishchepova ◽  
A. V. Panina ◽  
Yu. G. Yermolaev ◽  
...  

1984 ◽  
Vol 106 (1) ◽  
pp. 222-228 ◽  
Author(s):  
M. L. Marziale ◽  
R. E. Mayle

An experimental investigation was conducted to examine the effect of a periodic variation in the angle of attack on heat transfer at the leading edge of a gas turbine blade. A circular cylinder was used as a large-scale model of the leading edge region. The cylinder was placed in a wind tunnel and was oscillated rotationally about its axis. The incident flow Reynolds number and the Strouhal number of oscillation were chosen to model an actual turbine condition. Incident turbulence levels up to 4.9 percent were produced by grids placed upstream of the cylinder. The transfer rate was measured using a mass transfer technique and heat transfer rates inferred from the results. A direct comparison of the unsteady and steady results indicate that the effect is dependent on the Strouhal number, turbulence level, and the turbulence length scale, but that the largest observed effect was only a 10 percent augmentation at the nominal stagnation position.


1999 ◽  
Vol 121 (3) ◽  
pp. 558-568 ◽  
Author(s):  
M. B. Kang ◽  
A. Kohli ◽  
K. A. Thole

The leading edge region of a first-stage stator vane experiences high heat transfer rates, especially near the endwall, making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Reex = 6 × 105 and 1.2 × 106). In addition, laser-Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for a plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution, and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at higher Reynolds numbers due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand, the mean velocity, turbulent kinetic energy, and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point, which moves closer to the stator vane at lower Reynolds numbers.


Author(s):  
Christopher Clark ◽  
Graham Pullan ◽  
Eric Curtis ◽  
Frederic Goenaga

Low aspect ratio vanes, often the result of overall engine architecture constraints, create strong secondary flows and high endwall loss. In this paper, a splitter concept is demonstrated that reduces secondary flow strength and improves stage performance. An analytic conceptual study, corroborated by inviscid computations, shows that the total secondary kinetic energy of the secondary flow vortices is reduced when the number of passages is increased and, for a given number of vanes, when the inlet endwall boundary layer is evenly distributed between the passages. Viscous computations show that, for this to be achieved in a splitter configuration, the pressure-side leg of the low aspect ratio vane horseshoe vortex, must enter the adjacent passage (and not “jump” in front of the splitter leading edge). For a target turbine application, four vane designs were produced using a multi-objective optimization approach. These designs represent: current practice for a low aspect ratio vane; a design exempt from thickness constraints; and two designs incorporating splitter vanes. Each geometry is tested experimentally, as a sector, within a low-speed turbine stage. The vane designs with splitters geometries were found to reduce the measured secondary kinetic energy, by up to 85%, to a value similar to the design exempt from thickness constraints. The resulting flowfield was also more uniform in both the circumferential and radial directions. One splitter design was selected for a full annulus test where a mixed-out loss reduction, compared to the current practice design, of 15.3% was measured and the stage efficiency increased by 0.88%.


2021 ◽  
pp. 1-54
Author(s):  
Subhra Shankha Koley ◽  
Huang Chen ◽  
Ayush Saraswat ◽  
Joseph Katz

Abstract This experimental study characterizes the interactions of axial casing grooves with the flow in the tip region of an axial turbomachine. The tests involve grooves with the same inlet overlapping with the rotor blade leading edge, but with different exit directions located upstream. Among them, U grooves, whose circumferential outflow opposes the blade motion, achieve a 60% reduction in stall flowrate, but degrade the efficiency around the best efficiency point (BEP) by 2%. The S grooves, whose outlets are parallel to the blade rotation, improve the stall flowrate by only 36%, but do not degrade the BEP performance. To elucidate the mechanisms involved, stereo-PIV measurements covering the tip region and interior of grooves are performed in a refractive index matched facility. At low flow rates, the inflow into both grooves, which peaks when they are aligned with the blade pressure side, rolls up into a large vortex that lingers within the groove. By design, the outflow from S grooves is circumferentially positive. For the U grooves, fast circumferentially negative outflow peaks at the base of each groove, causing substantial periodic variations in the flow angle near the blade leading edge. At BEP, interactions with both grooves become milder, and most of the tip leakage vortex remains in the passage. Interactions with the S grooves are limited hence they do not degrade the efficiency. In contrast, the inflow into and outflow from the U grooves reverses direction, causing entrainment of secondary flows, which likely contribute to the reduced BEP efficiency.


Sign in / Sign up

Export Citation Format

Share Document