scholarly journals The Design and Development of a New 7 to 13.5 MW Industrial Two Shaft Gas Turbine (CW182)

Author(s):  
G. McQuiggan

This paper describes the design and development of the CW182 two shaft variable geometry industrial gas turbine. This gas turbine is a scaled down version of the existing CW352 gas turbine. The methods used to scale the gas turbine are explained together with a detailed description of those areas that were not scaled but were completely redesigned. In addition, details of the testing carried out on the new design components are described.

Author(s):  
F. Carchedi ◽  
G. R. Wood

This paper describes the design and development of a 15-stage axial flow compressor for a −6MW industrial gas turbine. Detailed aspects of the aerodynamic design are presented together with rig test data for the complete characteristic including stage data. Predictions of spanwise flow distributions are compared with measured values for the front stages of the compressor. Variable stagger stator blading is used to control the position of the low speed surge line and the effects of the stagger changes are discussed.


Author(s):  
Cleverson Bringhenti ◽  
Joa˜o R. Barbosa

For distributed power generation, sometimes the available gas turbines cannot match the power demands. It has been usual to uprate an existing gas turbine in the lower power range by increasing the firing temperature and speeding it up. The development costs are high and the time to make it operational is large. In the other hand, de-rating an existing gas turbine in the upper power range may be more convenient since it is expected to cut significantly the time for development and costs. In addition, the experience achieved with this engine may be easily extrapolated to the new engine. This paper deals with the performance analysis of an existing gas turbine, in the range of 25 MW, de-rated to the range of 18 MW, concerning the compressor modifications that could be more easily implemented. Analysis is performed for the base engine, running at part-load of MW. A variable geometry compressor is derived from the existing one. Search for optimized performance is carried out for new firing temperatures. A variable geometry turbine analysis is performed for new NGV settings, aiming at better cycle performance.


Author(s):  
Cesar Celis ◽  
Paula de M. Ribeiro Pinto ◽  
Rafael S. Barbosa ◽  
Sandro B. Ferreira

It is well known that gas turbine simulation involves satisfying the conditions of compatibility between its components. At design point, the components are all well matched and working at high efficiency regions. However, at steady state off-design, due to the compatibility issues and changes in operating parameters, basically turbine entry temperature and pressure ratio to attain a certain load, it is possible that the components may be working within regions of low efficiency. A reason for this phenomenon is that the flow areas at the various sections of the engine correspond to that at design point, such that operation at off-design is restricted. One way to widen the operational envelope of an engine is varying these flow areas, providing a good match between the gas turbine components. A widely used type of variable geometry which has attracted a great amount of interest is the use of compressor variable geometry, the so called variable inlet guide vanes (VIGVs), as a power control strategy, which involves the control of the air flow rate entering the compressor and the power output modulation at constant rotational speed. The purpose of the air flow rate modulation is to enhance the heat recovery performance and thus increase the combined cycle efficiency by maintaining high turbine exhaust temperature. One methodology used to model a variable geometry compressor, in the absence of its geometric data involves the use of correction factors, as functions of the VIGV change. Fundamentally, this methodology assumes that each new position of the VIGVs represents a new machine, i.e., a new design point, such that its original map of characteristics is displaced in order to describe this “new” compressor. The purpose of this work is to analyze the influence of the use of different functions for these correction factors on a W501F (one shaft, industrial) gas turbine simulation. An in-house computer program developed for performance modeling of gas turbines was utilized to carry out the simulations. The results provided by this computer code show good agreement with operational data, indicating that, although more tests must be conducted, the methodology seems to be reliable enough for the aims of the project for which it has been developed.


Author(s):  
R. C. Petitt

This paper describes the design and development of a new series 3000 two-shaft regenerative and simple cycle gas turbine for mechanical drive applications. Technical advances in the areas of aero-thermal, mechanical, controls, and materials design were combined to produce a machine with a regenerative cycle thermal efficiency of 32%. Increased automation and adaptability to remote control were provided by a new solid state control system and high pressure hydraulics.


1982 ◽  
Vol 104 (4) ◽  
pp. 823-831 ◽  
Author(s):  
F. Carchedi ◽  
G. R. Wood

The paper describes the design and development of a 15 stage axial flow compressor for a 6-MW industrial gas turbine. Detailed aspects of the aerodynamic design are presented together with rig test data for the complete characteristic including stage data. Predictions of spanwise flow distributions are compared with measured values for the front stages of the compressor. Variable stagger stator blading is used to control the position of the low-speed surge line and the effects of the stagger changes are discussed.


Author(s):  
A. S. Novick ◽  
D. L. Troth ◽  
J. Notardonato

The work described in this paper is a part of the DOE/LeRC “Advanced Conversion Technology Project” (ACT). The program is a multiple contract effort with funding provided by the Department of Energy and Technical Program Management provided by NASA LeRC. The emphasis in this paper is the fuel flexible combustor technology developed under the “Low NOx Heavy Fuel Combustor Concept Program” for application to the Detroit Diesel Allison (DDA) Model 570-K industrial gas turbine engine. The technology, to achieve emission goals, emphasizes dry fuel-bound nitrogen (FBN), control of NOx can be effected through a stated combustor with a rich initial combustion zone. A rich/quench/lean (RQL) variable geometry combustor utilizes the technology that will be presented to achieve low NOx from alternate fuels containing FBN. The results will focus on emissions and durability for multifuel operation.


Author(s):  
Rafael Barbosa ◽  
Sandro Ferreira

In this work a fuzzy based fault diagnosis system for an industrial gas turbine engine is presented. The system compares measured parameters and those calculated by a computer model, which sets the new and clean reference of the equipment. A fuzzy system classifies and quantifies the faults, which includes part load operation and takes into consideration the compressor variable geometry, which implies in a modification of the deviation pattern between the reference and the model. A commercial software, the GSP (Gas turbine Simulation Program), has been used for the process simulation. The reference software used is called NGGT (Natural Gas and Gas Turbine). Both were calibrated using a real industrial gas turbine operation data. Two compressor faults were simulated using GSP, the resulting variables were compared with those generated by NGGT. The fuzzy sets of the entry variables and the inference rules implemented in the fuzzy systems are dedicated to each fault. Thus, it is possible to add new faults and correct existing fault patterns without disturbing the other faults implemented. The system was tested for the two implemented faults by generating faulty test cases to several geometries and levels of damage. The results showed the robustness of the system and that it is possible to clearly identify the faults, for the several cases tested.


Author(s):  
Mahyar Akbari ◽  
Abdol Majid Khoshnood ◽  
Saied Irani

In this article, a novel approach for model-based sensor fault detection and estimation of gas turbine is presented. The proposed method includes driving a state-space model of gas turbine, designing a novel L1-norm Lyapunov-based observer, and a decision logic which is based on bank of observers. The novel observer is designed using multiple Lyapunov functions based on L1-norm, reducing the estimation noise while increasing the accuracy. The L1-norm observer is similar to sliding mode observer in switching time. The proposed observer also acts as a low-pass filter, subsequently reducing estimation chattering. Since a bank of observers is required in model-based sensor fault detection, a bank of L1-norm observers is designed in this article. Corresponding to the use of the bank of observers, a two-step fault detection decision logic is developed. Furthermore, the proposed state-space model is a hybrid data-driven model which is divided into two models for steady-state and transient conditions, according to the nature of the gas turbine. The model is developed by applying a subspace algorithm to the real field data of SGT-600 (an industrial gas turbine). The proposed model was validated by applying to two other similar gas turbines with different ambient and operational conditions. The results of the proposed approach implementation demonstrate precise gas turbine sensor fault detection and estimation.


Sign in / Sign up

Export Citation Format

Share Document