scholarly journals Cooling Characteristics of Film-Cooled Turbine Blades

Author(s):  
T. Abe ◽  
N. Doi ◽  
T. Kawaguchi ◽  
T. Yamane ◽  
T. Kumagai ◽  
...  

A series of experiments was performed to measure the cooling effectiveness of pin-fin type blades applicable to the first-stage blades of the high pressure turbine for the Advanced Gas Turbine of Japan (AGTJ-100A). Actual pin-fin type blades were used in three-dimensional hot cascade tests. Resulting cooling effectiveness distributions in chordwise direction showed relatively small deviation from the high average value and closely corresponded with analytical predictions. Another major finding was that for film cooling blades, particularly with a shower head film cooling, it is essential in the cascade tests to set the ratio between the coolant and mainstream temperature at values the same as real conditions. This makes it possible to simulate cooling air flow distributions in the blades of high temperature actual turbines using low temperature tests. This is also applicable to vanes with a shower head film cooling.

Author(s):  
Je-Chin Han ◽  
P. E. Jenkins

The intent of this work is to show, analytically, that superheated steam can provide better film cooling than conventional air for gas turbine blades and vanes. Goldstein’s two-dimensional and Eckert’s three-dimensional models have been reexamined and modified in order to include the effects of thermal-fluid properties of foreign gas injection on the film cooling effectiveness. Based on the modified models, the computed results for steam film cooling effectiveness, showing an increase of 80 to 100 percent when compared with air cooling at the same operating conditions, are presented.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Ahmed Khalil ◽  
Hatem Kayed ◽  
Abdallah Hanafi ◽  
Medhat Nemitallah ◽  
Mohamed Habib

This work investigates the performance of film-cooling on trailing edge of gas turbine blades using unsteady three-dimensional numerical model adopting large eddy simulation (LES) turbulence scheme in a low Mach number flow regime. This study is concerned with the scaling parameters affecting effectiveness and heat transfer performance on the trailing edge, as a critical design parameter, of gas turbine blades. Simulations were performed using ANSYS-fluentworkbench 17.2. High quality mesh was adapted, whereas the size of cells adjacent to the wall was optimized carefully to sufficiently resolve the boundary layer to obtain insight predictions of the film-cooling effectiveness on a flat plate downstream the slot opening. Blowing ratio, density ratio, Reynolds number, and the turbulence intensity of the mainstream and coolant flow are optimally examined against the film-cooling effectiveness. The predicted results showed a great agreement when compared with the experiments. The results show a distinctive behavior of the cooling effectiveness with blowing ratio variation as it has a dip in vicinity of unity which is explained by the behavior of the vortex entrainment and momentum of coolant flow. The negative effect of the turbulence intensity on the cooling effectiveness is demonstrated as well.


Author(s):  
P. Martini ◽  
A. Schulz ◽  
S. Wittig

The present study concentrates on the experimental and computational investigation of a cooled trailing edge in a modern turbine blade. The trailing edge features a pressure side cutback and a slot, stiffened by two rows of evenly spaced ribs in an inline configuration. Cooling air is ejected through the slot and forms a cooling film on the trailing edge cutback region. In the present configuration the lateral spacing of the ribs equals two times their width. The height of the ribs, i.e. the height of the slot equals their width. Since the ribs are provided with fillet radii of half the slot height in size, circular coolant jets are exiting the slot tangentially to the trailing edge cutback. The adiabatic wall temperature mappings on the trailing edge cutback indicate that strong three-dimensional flow interaction between the coolant jets and the hot main flow takes place in such a way that two or more coolant jets coalesce depending on the blowing ratio. Experimental and numerical data to be presented in the present study include adiabatic film cooling effectiveness on the trailing edge cutback, the pressure distribution along the internal ribbed passage as well as slot discharge coefficients for different blowing ratios ranging from M = 0.35 to 1.1.


2004 ◽  
Vol 126 (2) ◽  
pp. 229-236 ◽  
Author(s):  
P. Martini ◽  
A. Schulz

The present study concentrates on the experimental and computational investigation of a cooled trailing edge in a modern turbine blade. The trailing edge features a pressure side cutback and a slot, stiffened by two rows of evenly spaced ribs in an inline configuration. Cooling air is ejected through the slot and forms a cooling film on the trailing edge cutback region. In the present configuration the lateral spacing of the ribs equals two times their width. The height of the ribs, i.e., the height of the slot equals their width. Since the ribs are provided with fillet radii of half the slot height in size, circular coolant jets are exiting the slot tangentially to the trailing edge cutback. The adiabatic wall temperature mappings on the trailing edge cutback indicate that strong three-dimensional flow interaction between the coolant jets and the hot main flow takes place in such a way that two or more coolant jets coalesce depending on the blowing ratio. Experimental and numerical data to be presented in the present study include adiabatic film cooling effectiveness on the trailing edge cutback, the pressure distribution along the internal ribbed passage as well as slot discharge coefficients for different blowing ratios ranging from M=0.35 to 1.1.


Author(s):  
Chiyuki Nakamata ◽  
Fujio Mimura ◽  
Masahiro Matsushita ◽  
Takashi Yamane ◽  
Yoshitaka Fukuyama ◽  
...  

An integrated impingement and pin-fin cooling configuration is investigated experimentally. Temperature measurements have been performed for several test pieces with various pin/hole arrangements to clarify an influence of pin/hole arrangements on cooling effectiveness. The experiment has been conducted with 673K combustion gas flow and room temperature cooling air. Reynolds number of combustion gas flow is 380000 and Reynolds number of cooling air flow is in the range from 5000 to 30000. An infrared camera is used to measure a temperature distribution on a specimen surface. The area-averaged cooling effectiveness and the local cooling effectiveness are evaluated for each specimen and compared each other. There are evidences of the existence of pins on the local cooling effectiveness at the exact location of those. But the local cooling effectiveness are independent of the hole arrangement.


Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


Author(s):  
Lesley M. Wright ◽  
Stephen T. McClain ◽  
Charles P. Brown ◽  
Weston V. Harmon

A novel, double hole film cooling configuration is investigated as an alternative to traditional cylindrical and fanshaped, laidback holes. This experimental investigation utilizes a Stereo-Particle Image Velocimetry (S-PIV) to quantitatively assess the ability of the proposed, double hole geometry to weaken or mitigate the counter-rotating vortices formed within the jet structure. The three-dimensional flow field measurements are combined with surface film cooling effectiveness measurements obtained using Pressure Sensitive Paint (PSP). The double hole geometry consists of two compound angle holes. The inclination of each hole is θ = 35°, and the compound angle of the holes is β = ± 45° (with the holes angled toward one another). The simple angle cylindrical and shaped holes both have an inclination angle of θ = 35°. The blowing ratio is varied from M = 0.5 to 1.5 for all three film cooling geometries while the density ratio is maintained at DR = 1.0. Time averaged velocity distributions are obtained for both the mainstream and coolant flows at five streamwise planes across the fluid domain (x/d = −4, 0, 1, 5, and 10). These transverse velocity distributions are combined with the detailed film cooling effectiveness distributions on the surface to evaluate the proposed double hole configuration (compared to the traditional hole designs). The fanshaped, laidback geometry effectively reduces the strength of the kidney-shaped vortices within the structure of the jet (over the entire range of blowing ratios considered). The three-dimensional velocity field measurements indicate the secondary flows formed from the double hole geometry strengthen in the plane perpendicular to the mainstream flow. At the exit of the double hole geometry, the streamwise momentum of the jets is reduced (compared to the single, cylindrical hole), and the geometry offers improved film cooling coverage. However, moving downstream in the steamwise direction, the two jets form a single jet, and the counter-rotating vortices are comparable to those formed within the jet from a single, cylindrical hole. These strong secondary flows lift the coolant off the surface, and the film cooling coverage offered by the double hole geometry is reduced.


Author(s):  
Joao Vieira ◽  
John Coull ◽  
Peter Ireland ◽  
Eduardo Romero

Abstract High pressure turbine blade tips are critical for gas turbine performance and are sensitive to small geometric variations. For this reason, it is increasingly important for experiments and simulations to consider real geometry features. One commonly absent detail is the presence of welding beads on the cavity of the blade tip, which are an inherent by-product of the blade manufacturing process. This paper therefore investigates how such welds affect the Nusselt number, film cooling effectiveness and aerodynamic performance. Measurements are performed on a linear cascade of high pressure turbine blades at engine realistic Mach and Reynolds numbers. Two cooled blade tip geometries were tested: a baseline squealer geometry without welding beads, and a case with representative welding beads added to the tip cavity. Combinations of two tip gaps and several coolant mass flow rates were analysed. Pressure sensitive paint was used to measure the adiabatic film cooling effectiveness on the tip, which is supplemented by heat transfer coefficient measurements obtained via infrared thermography. Drawing from all of this data, it is shown that the weld beads have a generally detrimental impact on thermal performance, but with local variations. Aerodynamic loss measured downstream of the cascade is shown to be largely insensitive to the weld beads.


2009 ◽  
Vol 13 (1) ◽  
pp. 147-164 ◽  
Author(s):  
Ion Ion ◽  
Anibal Portinha ◽  
Jorge Martins ◽  
Vasco Teixeira ◽  
Joaquim Carneiro

Zirconia stabilized with 8 wt.% Y2O3 is the most common material to be applied in thermal barrier coatings owing to its excellent properties: low thermal conductivity, high toughness and thermal expansion coefficient as ceramic material. Calculation has been made to evaluate the gains of thermal barrier coatings applied on gas turbine blades. The study considers a top ceramic coating Zirconia stabilized with 8 wt.% Y2O3 on a NiCoCrAlY bond coat and Inconel 738LC as substrate. For different thickness and different cooling air flow rates, a thermodynamic analysis has been performed and pollutants emissions (CO, NOx) have been estimated to analyze the effect of rising the gas inlet temperature. The effect of thickness and thermal conductivity of top coating and the mass flow rate of cooling air have been analyzed. The model for heat transfer analysis gives the temperature reduction through the wall blade for the considered conditions and the results presented in this contribution are restricted to a two considered limits: (1) maximum allowable temperature for top layer (1200?C) and (2) for blade material (1000?C). The model can be used to analyze other materials that support higher temperatures helping in the development of new materials for thermal barrier coatings.


Sign in / Sign up

Export Citation Format

Share Document