scholarly journals A Comparison of the Transient and Heated-Coating Methods for the Measurement of Local Heat Transfer Coefficients on a Pin Fin

Author(s):  
J. W. Baughn ◽  
P. T. Ireland ◽  
T. V. Jones ◽  
N. Saniei

Measurements of the local heat transfer coefficients on a pin fin (i.e., a short cylinder in crossflow) in a duct have been made using two methods, both of which employ liquid crystals to map an isotherm on the surface. The transient method uses the liquid crystal to determine the transient response of the surface temperature to a change in the fluid temperature. The local heat transfer coefficient is determined from the surface response time and the thermal properties of the substrate. The heated-coating method uses an electrically heated coating (vacuum-deposited gold in this case) to provide a uniform heat flux while the liquid crystal is used to locate an isotherm on the surface. The two methods compare well, especially the value obtained near the center stagnation point of the pin fin where the difference in the thermal boundary condition of the two methods has little effect. They are close but differ somewhat in other regions.

1989 ◽  
Vol 111 (4) ◽  
pp. 877-881 ◽  
Author(s):  
J. W. Baughn ◽  
P. T. Ireland ◽  
T. V. Jones ◽  
N. Saniei

Measurements of the local heat transfer coefficients on a pin fin (i.e., a short cylinder in crossflow) in a duct have been made using two methods, both of which employ liquid crystals to map an isotherm on the surface. The transient method uses the liquid crystal to determine the transient response of the surface temperature to a change in the fluid temperature. The local heat transfer coefficient is determined from the surface response time and the thermal properties of the substrate. The heated-coating method uses an electrically heated coating (vacuum-deposited gold in this case) to provide a uniform heat flux, while the liquid crystal is used to locate an isotherm on the surface. The two methods compare well, especially the value obtained near the center stagnation point of the pin fin where the difference in the thermal boundary condition of the two methods has little effect. They are close but differ somewhat in other regions.


Author(s):  
A. M. Ai Dabagh ◽  
G. E. Andrews

The differences in the heat transfer coefficient between the pin and the wall in pin-fin heat transfer was determined for three pin length to diameter ratios. A staggered pin-fin array was used with a 50% duct flow blockage by the pins. The axial pitch-to-pin diameter ratio, X/D, was 1.5 and the transverse pitch-to-diameter ratio, S/D, was 2.0. Three pin length-to-diameter ratios, T/D, of 0.7. 1.0 and 2.2 were investigated. The mean heat transfer coefficient results were very similar to previous work for similar geometries. The axial variation of heat transfer coefficient showed this to be fairly uniform with a small peak at the fourth row. Around each pin four measurements of the heat transfer coefficients were made with four on the fin surface at each end. Thus 12 local heat transfer coefficients were made per pin-fin. These showed that for all three geometries the wall or fin heat transfer was always greater by 15–35% than the pin for the same velocity and Re.


Author(s):  
Jeong-Heon Shin ◽  
Tomer Rozenfeld ◽  
Ashwin Vutha ◽  
Yingying Wang ◽  
Gennady Ziskind ◽  
...  

Experimental and simulation studies were performed to reveal local heat transfer coefficients under jet impinging in micro domain with Nitrogen gas. The experimental device was made of a 500 μm thick Pyrex and 400 μm thick silicon wafers. On the Pyrex wafer, four 100 nm thick resistance temperature detector (RTD) thermistors and a heater were fabricated from titanium. Jet orifices were etched by deep reactive ion etching (DRIE) on a silicon wafer, which was attached to the Pyrex wafer through a vinyl sticker (250 μm thick). A 1.9 mm × 14.8 mm × 250 μm micro channel was formed by laser drilling into the sticker. Varying flow rates of Nitrogen gas and heat fluxes of the heater, temperatures of the four thermistors were collected and local heat transfer coefficients were inferred enabling to divulge the jet impinging cooling characteristics. Initial simulations were used to complement experiments and to obtain detailed flow patterns of the jet, temperature distribution on the heater area, and fluid temperature distribution.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Alexandros Terzis ◽  
Stavros Bontitsopoulos ◽  
Peter Ott ◽  
Jens von Wolfersdorf ◽  
Anestis I. Kalfas

This paper examines the applicability of a triple layer of thermochromic liquid crystals (TLCs) for the determination of local heat transfer coefficients using the transient liquid crystal (LC) technique. The experiments were carried out in a narrow impingement channel, typically used for turbine blade cooling applications. Three types of narrow bandwidth LCs (1 °C range) of 35 °C, 38 °C, and 41 °C were individually painted on the target plate of the cooling cavity and the overall paint thickness was accurately determined with an integral coating thickness gauge. The 1D transient heat conduction equation is then implicitly solved for each individual TLC layer on its realistic depth on the painted surface. Local heat transfer coefficients are therefore calculated three times for the same location in the flow improving the measurement accuracy, especially at regions where the LC detection times are too short (stagnation points) or too long (wall-jet regions). The results indicate that if multiple LC layers are used and the paint thickness is not considered, the heat transfer coefficients can be significantly underestimated.


Author(s):  
Jason K. Ostanek ◽  
Karen A. Thole

Pin-fin channels are commonly used for cooling the trailing edges in turbine blades and vanes. While many studies have investigated heat transfer performance of pin-fin channels, few studies have investigated pin-fin flowfields. The present study compares the time-dependent near wake flow and the time-mean surface heat transfer for varying pin-fin configurations at a Reynolds number of 2.0e4. Pin-fin aspect ratio showed little influence on pin-surface heat transfer coefficients when increasing H/D from 1.0 to 2.0. Changes in streamwise and spanwise spacing, however, were found to significantly impact the behavior of the near wake flow and local heat transfer coefficients. Decreasing spanwise spacing from S/D = 3.0 to 1.5 in a single pin-fin row was found to suppress downstream vortex shedding and create biased, asymmetric wakes. Local heat transfer coefficients on the trailing side of the pin-fin reflected that vortex shedding, observed for spanwise spacings S/D ≥ 2.0, was beneficial for heat transfer on the pin-surface. Similarly, decreasing streamwise spacing from X/D = 3.03 to 2.16 was found to suppress vortex shedding in the first row of a seven row array. For those cases that support vortex shedding, X/D ≥ 2.60, pin-fin heat transfer increased on the trailing side but array heat transfer in downstream rows decreased.


2013 ◽  
Vol 34 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

Abstract The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.


Author(s):  
T. Vossel ◽  
N. Wolff ◽  
B. Pustal ◽  
A. Bührig-Polaczek ◽  
M. Ahmadein

AbstractAnticipating the processes and parameters involved for accomplishing a sound metal casting requires an in-depth understanding of the underlying behaviors characterizing a liquid melt solidifying inside its mold. Heat balance represents a major factor in describing the thermal conditions in a casting process and one of its main influences is the heat transfer between the casting and its surroundings. Local heat transfer coefficients describe how well heat can be transferred from one body or material to another. This paper will discuss the estimation of these coefficients in a gravity die casting process with local air gap formation and heat shrinkage induced contact pressure. Both an experimental evaluation and a numerical modeling for a solidification simulation will be performed as two means of investigating the local heat transfer coefficients and their local differences for regions with air gap formation or contact pressure when casting A356 (AlSi7Mg0.3).


2015 ◽  
Vol 19 (5) ◽  
pp. 1769-1789 ◽  
Author(s):  
Volodymyr Rifert ◽  
Volodymyr Sereda

Survey of the works on condensation inside smooth horizontal tubes published from 1955 to 2013 has been performed. Theoretical and experimental investigations, as well as more than 25 methods and correlations for heat transfer prediction are considered. It is shown that accuracy of this prediction depends on the accuracy of volumetric vapor content and pressure drop at the interphase. The necessity of new studies concerning both local heat transfer coefficients and film condensation along tube perimeter and length under annular, stratified and intermediate regimes of phase flow was substantiated. These characteristics being defined will allow determining more precisely the boundaries of the flow regimes and the methods of heat transfer prediction.


Sign in / Sign up

Export Citation Format

Share Document