The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 4 — Flow Fields for Incidence Angles of −1.5 and −8.5 Degrees

Author(s):  
W. C. Zierke ◽  
S. Deutsch

Measurements, made with laser Doppler velocimetry, about a double-circular-arc compressor blade in cascade are presented for −1.5 and −8.5 degree incidence angles and a chord Reynolds number near 500,000. Comparisons between the results of the current study and those of our earlier work at a 5.0 degree incidence are made. It is found that in spite of the relative sophistication of the measurement techniques, transition on the pressure surface at the −1.5 degree incidence is dominated by a separation “bubble” too small to be detected by the laser Doppler velocimeter. The development of the boundary layers at −1.5 and 5.0 degrees are found to be similar. In contrast to the flow at these two incidence angles, the leading edge separation “bubble” is on the pressure surface for the −8.5 degree incidence. Here, all of the measured boundary layers on the pressure surface are turbulent — but extremely thin — while on the suction surface, a laminar separation/turbulent reattachment “bubble” lies between roughly 35% and 60% chord. This “bubble” is quite thin, and some problems in interpreting backflow data.

1990 ◽  
Vol 112 (2) ◽  
pp. 241-255 ◽  
Author(s):  
W. C. Zierke ◽  
S. Deutsch

Measurements, made with laser Doppler velocimetry, about a double-circular-arc compressor blade in cascade are presented for −1.5 and −8.5 deg incidence angles and a chord Reynolds number near 500,000. Comparisons between the results of the current study and those of our earlier work at a 5.0 deg incidence are made. It is found that in spite of the relative sophistication of the measurement techniques, transition on the pressure surface at the −1.5 deg incidence is dominated by a separation “bubble” too small to be detected by the laser Doppler velocimeter. The development of the boundary layers at −1.5 and 5.0 deg is found to be similar. In contrast to the flow at these two incidence angles, the leading edge separation bubble is on the pressure surface for the −8.5 deg incidence. Here, all of the measured boundary layers on the pressure surface are turbulent—but extremely thin—while on the suction surface, a laminar separation/turbulent reattachment bubble lies between roughly 35 percent and 60 percent chord. This bubble is quite thin, and some problems in interpreting the backflow data are discussed.


1999 ◽  
Vol 5 (2) ◽  
pp. 89-98 ◽  
Author(s):  
Garth V. Hobson ◽  
Bryce E. Wakefield ◽  
William B. Roberts

Detailed measurements, with a two-component laser-Doppler velocimeter and a thermal anemometer were made near the suction surface leading edge of controlled-diffusion airfoils in cascade. The Reynolds number was near 700,000, Mach number equal to 0.25, and freestream turbulence was at 1.5% ahead of the cascade.It was found that there was a localized region of high turbulence near the suction surface leading edge at high incidence. This turbulence amplification is thought to be due to the interaction of the free-shear layer with the freestream inlet turbulence. The presence of the local high turbulence affects the development of the short laminar separation bubble that forms very near the suction side leading edge of these blades. Calculations indicate that the local high levels of turbulence can cause rapid transition in the laminar bubble allowing it to reattach as a short “non-burst” type.The high turbulence, which can reach point values greater than 25% at high incidence, is the reason that leading edge laminar separation bubbles can reattach in the high pressure gradient regions near the leading edge. Two variations for inlet turbulence intensity were measured for this cascade. The first is the variation ofmaximum inlet turbulence with respect to inlet-flow angle; and the second is the variation of leading edge turbulence with respect to upstream distance from the leading edge of the blades.


Author(s):  
Garth V. Hobson ◽  
Bryce E. Wakefield ◽  
William B. Roberts

Detailed measurements, with a two-component laser-Doppler velocimeter and a thermal anemometer were made near the suction surface leading edge of Controlled-Diffusion airfoils in cascade. The Reynolds number was near 700,000, Mach number equal to 0.25, and freestream turbulence was at 1.5% ahead of the cascade. It was found that there was a localized region of high turbulence near the suction surface leading edge at high incidence. This turbulence amplification is thought to be due to the interaction of the free-shear layer with the freestream inlet turbulence. The presence of the local high turbulence affects the development of the short laminar separation bubble that forms very near the suction side leading edge of these blades. Calculations indicate that the local high levels of turbulence can cause rapid transition in the laminar bubble allowing it to reattach as a short “non-burst” type. The high turbulence, which can reach point values greater than 25% at high incidence, is the reason that leading edge laminar separation bubbles can reattach in the high pressure gradient regions near the leading edge. Two variations for inlet turbulence intensity were measured for this cascade. The first is the variation of maximum inlet turbulence with respect to inlet-flow angle; and the second is the variation of leading edge turbulence with respect to upstream distance from the leading edge of the blades.


1988 ◽  
Vol 110 (1) ◽  
pp. 138-145 ◽  
Author(s):  
S. Deutsch ◽  
W. C. Zierke

Using the facility described in Part 1 [29], eleven detailed velocity and turbulence intensity profiles are obtained on the suction surface of a double circular arc blade in cascade. At the measured incidence angle of 5 deg, transition through a leading edge separation bubble occurs before 2.6 percent chord. A continuing recovery from this leading edge separation is apparent in the measured boundary layer profiles at 2.6 and 7.6 percent chord. Recovery appears to be complete by 12.7 percent chord. The data then illustrate the evolution of the nonequilibrium turbulent boundary layers as they approach a second region of separation. Following the criteria established by Simpson et al. [1], we find that intermittent separation occurs near 60 percent chord while detachment occurs at 84.2 percent chord. Comparison between the measured profiles and the sublimation visualization studies indicates that the flow visualization is signaling the location of incipient detachment (1 percent instantaneous backflow). Measured profiles are also considered in light of similarity techniques for boundary layers approaching separation. Outer region similarity is shown to vanish for profiles downstream of detachment.


Author(s):  
L. He

An experimental and computational study has been carried out on a linear cascade of low pressure turbine blades with the middle blade oscillating in a torsion mode. The main objectives of the present work were to enhance understanding of the behaviour of bubble type of flow separation and to examine the predictive ability of a computational method. In addition, an attempt was made to address a general modelling issue: was the linear assumption adequately valid for such kind of flow? In Part 1 of this paper, the experimental work was described. Unsteady pressure was measured along blade surfaces using off-board mounted pressure transducers at realistic reduced frequency conditions. A short separation bubble on the suction surface near the trailing edge and a long leading-edge separation bubble on the pressure surface were identified. It was found that in the regions of separation bubbles, unsteady pressure was largely influenced by the movement of reattachment point, featured by an abrupt phase shift and an amplitude trough in the 1st harmonic distribution. The short bubble on the suction surface seemed to follow closely a laminar bubble transition model in a quasi-steady manner, and had a localized effect. The leading-edge long bubble on the pressure surface, on the other hand, was featured by a large movement of the reattachment point, which affected the surface unsteady pressure distribution substantially. As far as the aerodynamic damping was concerned, there was a destabilizing effect in the separated flow region, which was however largely balanced by the stabilizing effect downstream of the reattachment point due to the abrupt phase change.


1988 ◽  
Vol 110 (1) ◽  
pp. 146-152 ◽  
Author(s):  
S. Deutsch ◽  
W. C. Zierke

Using the facility described in Part 1 [23], 11 detailed velocity and turbulence intensity profiles are obtained on the pressure surface of a double circular arc compressor blade in cascade. Two profiles are obtained in the near wake. Laminar boundary layer profiles, which agree well with profiles calculated from Falkner–Skan theory at the local pressure gradient, persist through 57.2 percent chord. The measurements indicate that the onset of transition occurs near 60 percent chord—a value in good agreement with the sublimation flow visualization studies (see Part 1). The lack of a logarithmic region in the data measured at the last chord position (97.9 percent chord) indicates that transition is not complete. The thin laminar boundary layers near the leading edge lead to some measurement problems, which are characterized by large turbulence intensities, in using the laser-Doppler velocimeter (LDV). Close examination of this problem shows that a combination of velocity-gradient broadening and a vibration of the LDV measurement volume causes an elevation of the measured turbulence levels. Fortunately only small errors in mean velocity are introduced. Because of the detached boundary layer on the suction surface, both of the near-wake velocity profiles exhibit regions of backflow. As expected, these near-wake velocity profiles do not exhibit similarity when tested against criteria derived for the far wake.


Author(s):  
Y. K. Ho ◽  
G. J. Walker ◽  
P. Stow

Performance calculations for a NASA controlled-diffusion compressor blade have been carried out with a coupled inviscid-boundary layer code and a time-marching Navier-Stokes solver. Comparisons with experimental test data highlight and explain the strengths and limitations of both these computational methods. The boundary layer code gives good results at and near design conditions. Loss predictions however deteriorated at off-design incidences. This is mainly due to a problem with leading edge laminar separation bubble modelling; coupled with an inability of the calculations to grow the turbulent boundary layer at a correct rate in a strong adverse pressure gradient. Navier-Stokes loss predictions on the other hand are creditable throughout the whole incidence range, except at extreme positive incidence where turbulence modeling problems similar to those of the coupled boundary layer code are observed. The main drawback for the Navier-Stokes code is the slow rate of convergence for these low Mach number cases. Plans are currently under review to address this problem. Both codes give excellent predictions of the blade surface pressure distributions for all the cases considered.


Author(s):  
Samuel C. T. Perkins ◽  
Alan D. Henderson

Studies on the effects of stator reduced frequency in low pressure turbines have shown that periodic wake-induced unsteadiness can increase steady flow circulation by as much as 15% and reduce losses compared to a steady flow datum. A large separation bubble downstream of peak suction that formed under steady flow conditions was periodically suppressed by wake passing events, resulting in significantly reduced losses within the boundary layer. This research extends this concept to a controlled diffusion compressor stator blade with a circular arc leading edge. The blade was placed inside a large scale, two-dimensional, cascade with a rotating bar mechanism used to simulate an upstream rotor blade row. The blade profile has been shown to experience leading edge separations and subsequent transition on both the pressure and suction surfaces due to a velocity overspeed caused by discontinuities in surface curvature. Testing was carried out at reduced frequencies of 0.47, 0.94 and 1.88 at the design inlet flow angle 45.5° and Reynolds number based on chord of 230,000. The freestream turbulence intensity was 4.0%. A range of experimental measurements were used to look at the blade’s performance: high resolution time-averaged blade surface static pressure measurements, inlet and exit 3-hole probe traverses and instantaneous, ensemble averaged and time average surface mounted hot-film measurements for the calculation of turbulent intermittency and quasi wall-shear stress. Results showed that increasing the stator reduced frequency from, 0–1.88, increased the overall blade pressure loss. The losses generated by the pressure surface and suction surface differed significantly and are affected very differently. The pressure surface demonstrated a clear reduction in loss with an increase in reduced frequency whereas the opposite trend was seen on the suction surface. Wake-induced turbulent strips suppressed the formation of leading edge separation bubbles that formed under steady flow conditions and in between wake passing events. Wake-induced turbulent strips reduced in width and level of turbulent intermittency through the favorable pressure gradients leading to peak suction and grew in the adverse pressure gradient of the velocity overspeed. The flow between wake-induced turbulent strips partially relaminarised through the favorable pressure gradient leading to peak suction.


Author(s):  
M S Genç

In this study, a prediction of the transition and stall characteristics of an NACA64A006 thin-aerofoil was numerically simulated by FLUENT using k— kL—ω and k—ω shear-stress transport (SST) transition models, recently developed, and k—ω SST and k—ε turbulence models. Subsonic flow with free stream Mach number ( M∞) of 0.17 and the high Reynolds number ( Re) of 5.8×106 was considered at an angle of attack varying from 2° to 11°. However, the computed results were compared with the experiments of McCollough and Gault. Lift and pressure curves were accurately predicted using the k— kL—ω transition model, while the k—ω SST transition model and the k—ω SST and k—ε turbulence models did not have a good agreement with the experimental results. The k— kL—ω transition model showed that the laminar separation and turbulent reattachment occurred near the leading edge of the NACA64A006 thin aerofoil, which caused the formation of the laminar separation bubble on the suction surface as in the experiments. Consequently, the transition and stalling characteristics of this aerofoil were successfully predicted using FLUENT with the k— kL—ω transition model at high Re number flow.


1998 ◽  
Vol 120 (1) ◽  
pp. 170-178 ◽  
Author(s):  
G. V. Hobson ◽  
A. J. H. Williams ◽  
H. J. Ganaim Rickel

Compressor stall was simulated in the Low-Speed Cascade Wind Tunnel at the Turbopropulsion Laboratory of the Naval Postgraduate School. The test blades were of controlled-diffusion design with a solidity of 1.67, and stalling occurred at 10 deg of incidence above the design inlet air angle. All measurements were taken at a flow Reynolds number, based on chord length, of 700,000. Laser-sheet flow visualization techniques showed that the stalling process was unsteady and occurred over the whole cascade. Detailed laser-Doppler-velocimetry measurements over the suction side of the blades showed regions of continuous and intermittent reverse flow. The measurements of the continuous reverse flow region at the leading edge were the first data of their kind in the leading edge separation bubble. The regions of intermittent reverse flow, measured with laser-Doppler velocimeter, corresponded to the flow visualization studies. Blade surface pressure measurements showed a decrease in normal force on the blade, as would be expected at stall. Data are presented in a form that characterizes the unsteady positive and negative velocities about their mean, for both the continuous reverse flow regions and the intermittent reverse flow regions.


Sign in / Sign up

Export Citation Format

Share Document