Two Stage Slagging Combustor Design for a Coal-Fueled Industrial Gas Turbine

Author(s):  
L. H. Cowell ◽  
R. T. LeCren ◽  
C. E. Tenbrook

A full size combustor for a coal-fueled industrial gas turbine engine has been designed and fabricated. The design is based on extensive work completed through one-tenth scale combustion tests. Testing of the combustion hardware will be completed with a high pressure air supply in a combustion test facility before the components are integrated with the gas turbine engine. The combustor is a two-staged, rich-lean design. Fuel and air are introduced in the primary combustion zone where the combustion process is initiated. The primary zone operates in a slagging mode inertially removing coal ash from the gas stream. Four injectors designed for coal-water mixture (CWM) atomization are used to introduce the fuel and primary air. In the secondary combustion zone additional air is injected to complete the combustion process at fuel lean conditions. The secondary zone also serves to reduce the gas temperatures exiting the combustor. Between the primary and secondary zones is a Particulate Rejection Impact Separator (PRIS). In this device much of the coal ash that passes from the primary zone is inertially separated from the gas stream. The two-staged combustor along with the PRIS have been designated as the combustor island. All of the combustor island components are refractory lined to minimize heat loss. Fabrication of the combustor has been completed. The PRIS is still under construction. The combustor hardware is being installed at the Caterpillar Technical Center for high pressure test evaluation. The design, test installation, and test plan of the full size combustor island are discussed.

1992 ◽  
Vol 114 (2) ◽  
pp. 359-366 ◽  
Author(s):  
L. H. Cowell ◽  
R. T. LeCren ◽  
C. E. Tenbrook

A full-size combustor for a coal-fueled industrial gas turbine engine has been designed and fabricated. The design is based on extensive work completed through one-tenth scale combustion tests. Testing of the combustion hardware will be completed with a high pressure air supply in a combustion test facility before the components are integrated with the gas turbine engine. The combustor is a two-staged, rich-lean design. Fuel and air are introduced in the primary combustion zone where the combustion process is initiated. The primary zone operates in a slagging mode inertially removing coal ash from the gas stream. Four injectors designed for coal water mixture (CWM) atomization are used to introduce the fuel and primary air. In the secondary combustion zone, additional air is injected to complete the combustion process at fuel lean conditions. The secondary zone also serves to reduce the gas temperatures exiting the combustor. Between the primary and secondary zones is a Particulate Rejection Impact Separator (PRIS). In this device much of the coal ash that passes from the primary zone is inertially separated from the gas stream. The two-staged combustor along with the PRIS have been designated as the combustor island. All of the combustor island components are refractory-lined to minimize heat loss. Fabrication of the combustor has been completed. The PRIS is still under construction. The combustor hardware is being installed at the Caterpillar Technical Center for high pressure test evaluation. The design, test installation, and test plan of the full-size combustor island are discussed.


Author(s):  
L. H. Cowell ◽  
R. T. LeCren

A full-size combustor for a coal-fueled industrial gas turbine engine has been tested to evaluate combustion performance prior to integration with an industrial gas turbine. The design is based on extensive work completed through one-tenth scale combustion tests. Testing of the combustion hardware is completed with a high pressure air supply in a combustion test facility at the Caterpillar Technical Center. The combustor is a two-staged, rich-lean design. Fuel and air are introduced in the primary combustion zone where the combustion process is initiated. The primary zone operates in a slagging mode inertially removing coal ash from the gas stream. Four injectors designed for coal-water mixture (CWM) atomization are used to introduce the fuel and primary air. In the secondary combustion zone additional air is injected to complete the combustion process at fuel-lean conditions. The secondary zone also serves to reduce the gas temperatures exiting the combustor. The combustor has operated at test pressures of 7 bars with 600K inlet temperature. Tests have been completed to set the air flow split and to map the performance of the combustor as characterized by pollutant emissions, coal ash separation, and temperature profile. Test results with a comparison to subscale test results are discussed. The test results have indicated that the combustor operates at combustion efficiencies above 98% and with pollutant emissions below design goals.


Author(s):  
Seyed M Ghoreyshi ◽  
Meinhard T Schobeiri

The Ultra-High Efficiency Gas Turbine Engine (UHEGT) was introduced in our previous studies. In UHEGT, the combustion process is no longer contained in isolation between the compressor and turbine. It is rather distributed in multiple stages and integrated within the high-pressure turbine stator rows. Compared to the current most advanced conventional gas turbines, UHEGT considerably improves the efficiency and output power of the engine while reducing its emissions and size. In this study, a six-stage UHEGT turbine with three stages of stator internal combustion is designed and analyzed. The design represents a single spool turboshaft system for power generation using gaseous fuels. The preliminary flow path for each turbine stage is designed by the meanline approach and modified using Computational Fluid Dynamics (CFD). Unsteady CFD calculation (via commercial software ANSYS CFX) is used to simulate and optimize the flow and combustion process through high-pressure turbine stages. The results show a base thermal efficiency of above 45% is achieved. It shows a successful integration of the multi-stage combustion process into the high-pressure turbine stages and a highly uniform temperature distribution at the inlet of each rotor row. High temperatures in some areas on the stator blade surfaces are controlled using indexing of fuel injectors and stator blades.


Author(s):  
Kishor Kumar ◽  
R. Prathapanayaka ◽  
S. V. Ramana Murthy ◽  
S. Kishore Kumar ◽  
T. M. Ajay Krishna

This paper describes the aerodynamic design and analysis of a high-pressure, single-stage axial flow turbine suitable for small gas turbine engine application using computational methods. The specifications of turbine were based on the need of a typical high-pressure compressor and geometric restrictions of small gas turbine engine. Baseline design parameters such as flow coefficient, stage loading coefficient are close to 0.23 and 1.22 respectively with maximum flow expansion in the NGV rows. In the preliminary design mode, the meanline approach is used to generate the turbine flow path and the design point performance is achieved by considering three blade sections at hub, mean and tip using the AMDC+KO+MK+BSM loss models to meet the design constraints. An average exit swirl angle of less than 5 degrees is achieved leading to minimum losses in the stage. Also, NGV and rotor blade numbers were chosen based on the optimum blade solidity. Blade profile is redesigned using the results from blade-to-blade analysis and through-flow analysis based on an enhanced Dawes BTOB3D flow solver. Using PbCFD (Pushbutton CFD) and commercially available CFD software ANSYS-CFX, aero-thermodynamic parameters like pressure ratios, aerodynamic power, and efficiencies are computed and these results are compared with one another. The boundary conditions, convergence criterion, and turbulence model used in CFD computations are set uniform for comparison with 8 per cent turbulence intensity. Grid independence study is performed at design point to optimize the grid density for off-design performance predictions. ANSYS-CFX and PbCFD have predicted higher efficiency of 3.4% and 1.2% respectively with respect to targeted efficiency of 89 per cent.


2010 ◽  
Author(s):  
Shahrokh Etemad ◽  
Benjamin Baird ◽  
Sandeep Alavandi ◽  
William Pfefferle

Author(s):  
Qihan Li ◽  
James F. Hamilton

A method is presented for calculating the dynamics of a dual-rotor gas turbine engine equipped with a flexible intershaft squeeze-film damper. The method is based on the functional expansion component synthesis method. The transient response of the rotor due to a suddenly applied unbalance in the high-pressure turbine under different steady-speed operations is calculated. The damping effects of the intershaft damper and stability of the rotor system are investigated.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Bennett M. Staton ◽  
Brian T. Bohan ◽  
Marc D. Polanka ◽  
Larry P. Goss

Abstract A disk-oriented engine was designed to reduce the overall length of a gas turbine engine, combining a single-stage centrifugal compressor and radial in-flow turbine (RIT) in a back-to-back configuration. The focus of this research was to understand how this unique flow path impacted the combustion process. Computational analysis was accomplished to determine the feasibility of reducing the axial length of a gas turbine engine utilizing circumferential combustion. The desire was to maintain circumferential swirl from the compressor through a U-bend combustion path. The U-bend reverses the outboard flow from the compressor into an integrated turbine guide vane in preparation for power extraction by the RIT. The computational targets for this design were a turbine inlet temperature of 1300 K, operating with a 3% total pressure drop across the combustor, and a turbine inlet pattern factor (PF) of 0.24 to produce a cycle capable of creating 668 N of thrust. By wrapping the combustion chamber about the circumference of the turbomachinery, the axial length of the entire engine was reduced. Reallocating the combustor volume from the axial to radial orientation reduced the overall length of the system up to 40%, improving the mobility and modularity of gas turbine power in specific applications. This reduction in axial length could be applied to electric power generation for both ground power and airborne distributive electric propulsion. Computational results were further compared to experimental velocity measurements on custom fuel–air swirl injectors at mass flow conditions representative of 668 N of thrust, providing qualitative and quantitative insight into the stability of the flame anchoring system. From this design, a full-scale physical model of the disk-oriented engine was designed for combustion analysis.


Sign in / Sign up

Export Citation Format

Share Document