Computations of Turbulent Flow and Heat Transfer in Staggered Tube Banks

Author(s):  
M. C. Sharatchandra ◽  
David L. Rhode

Abstract Turbulent Flow in closely spaced staggered tube bundles is numerically investigated using a finite-volume approach in general curvilinear coordinates. Attention if focused on the hydrodynamic and thermal effects of the longitudinal displacement of alternate tube rows. The computations used both standard and 2-layer k–ϵ turbulence models in conjunction with a streamwise periodic finite volume formulation. The computations are in excellent agreement with experimental data for the limiting case of flow and heat transfer in undisplaced tube banks. Furthermore, the results indicate increases in both pressure drop and heat transfer with an increase in displacement. The results of this study may serve as an aid in the design of shell and tube cross flow heat exchangers.

2011 ◽  
Vol 32 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Isak Kotcioglu ◽  
Ahmet Cansiz ◽  
Sinan Caliskan ◽  
Senol Baskaya

Author(s):  
Jahed Hossain ◽  
Lucky V. Tran ◽  
Jayanta S. Kapat ◽  
Erik Fernandez ◽  
Rajan Kumar

An experimental investigation of detailed flow and heat transfer in a narrow impingement channel was studied; the channel included 15 inline jets in a single row with a jet-to-target wall distance of 3 jet diameters. The spanwise length of the channel was 4 jet diameters, and a streamwise jet spacing of 5 jet diameters was considered for the current study. Both the flow physics and heat transfer tests were run at an average jet Reynolds number of 30,000. Temperature sensitive paint was used to study heat transfer at the target wall. Along with other parameters, jet-to-jet interaction in a narrow row impingement channel plays a significant role on heat transfer distribution at the side and target walls as the self-induced jet cross flow tends to bend the downstream jets. The present work shows detailed information of flow physics using Particle Image Velocimetry (PIV). PIV measurements were taken at planes normal to the target wall along the jet centerline for several jets. The flow field and heat transfer data was compared between the experiment and CFD in order to understand the relationship between flow characteristics and heat transfer. The experimental data gathered from PIV can be used as benchmark data for validating the current state of the art RANS turbulence models as well as for Large Eddy Simulation (LES).


2014 ◽  
Vol 18 (4) ◽  
pp. 1145-1158 ◽  
Author(s):  
Kamil Arslan

In this study, steady-state turbulent forced flow and heat transfer in a horizontal smooth semi-circular cross-sectioned duct was numerically investigated. The study was carried out in the turbulent flow condition where Reynolds numbers range from 1?104 to 5.5?104. Flow is hydrodynamically and thermally developing (simultaneously developing flow) under uniform surface heat flux with uniform peripheral wall heat flux (H2) boundary condition on the duct?s wall. A commercial CFD program, Ansys Fluent 12.1, with different turbulent models was used to carry out the numerical study. Different suitable turbulence models for fully turbulent flow (k-? Standard, k-? Realizable, k-? RNG, k-? Standard and k-? SST) were used in this study. The results have shown that as the Reynolds number increases Nusselt number increases but Darcy friction factor decreases. Based on the present numerical solutions, new engineering correlations were presented for the average Nusselt number and average Darcy friction factor. The numerical results for different turbulence models were compared with each other and similar experimental investigations carried out in the literature. It is obtained that, k-? Standard, k-? Realizable and k-? RNG turbulence models are the most suitable turbulence models for this investigation. Isovel contours of velocity magnitude and temperature distribution for different Reynolds numbers, turbulence models and axial stations in the duct were presented graphically. Also, local heat transfer coefficient and local Darcy friction factor as function of dimensionless position along the duct were obtained in this investigation.


Author(s):  
Georgii Glebovich Yankov ◽  
Vladimir Kurganov ◽  
Yury Zeigarnik ◽  
Irina Maslakova

Abstract The review of numerical studies on the turbulent flow and heat transfer of supercritical pressure (SCP) coolants in heated vertical round tubes, which were conducted using different differential turbulent viscosity models, is presented. It is shown that most often the turbulent viscosity models only qualitatively predict the deteriorated heat transfer effects, which appear due do buoyancy forces and thermal acceleration effects at strongly variable physical properties of a coolant. At the same time, the regimes of normal heat transfer are successfully reproduced by "standard" k- and RNG models with wall functions, as well as by two-layer models. The conclusion is made that none of the presently known turbulent viscosity models can be confidently recommended for predicting any flow regimes and heat transfer of SCP coolants. Strongly variable properties of SCP coolant stipulate more strict demands for validating mesh independence of the obtained results and for an accuracy of approximation of the tabulated values of the coolant properties. It was ascertained that using more and more numerous calculation codes and the results from their application requires certain caution and circumspection. In some works, the parameters of the regimes used for turbulent viscosity model verification and those of the experiments attracted for such verification did not correspond each other. It is pointed out that the crying discrepancy in the predictions of different authors conducted using the same CFD codes and turbulence models and possible reasons for such a discrepancy are not analyzed.


Sign in / Sign up

Export Citation Format

Share Document