scholarly journals Entrance Effects on Diffused Film-Cooling Holes

Author(s):  
A. Kohli ◽  
K. A. Thole

Film-cooling is a widely used method of prolonging blade life in high performance gas turbines and is implemented by injecting cold air through discrete holes on the blade surface. Most experimental research on film-cooling has been performed using round holes supplied by a stagnant plenum. This can be quite different from the actual turbine blade conditions in that a crossflow may be present whereby the internal channel Reynolds number could be as high as 90,000. This computational study uses a film-cooling hole that is inclined at 35° with respect to the mainstream and is diffused at the hole exit by 15°. An engine representative jet-to-mainstream density ratio of two was simulated. The test matrix consisted of fourteen different cases that were simulated for the two different blowing ratios in which the following effects were investigated: a) the effect of the orientation of the coolant supply channel relative to the cooling hole, b) the effect of the channel Reynolds number, and c) the effect of the metering length of the cooling hole. Results showed that the orientation of the coolant supply had a large effect whereby the worst orientation, in terms of a reduced adiabatic effectiveness, was predicted when the channel supplying the cooling hole was perpendicular to the mainstream. For this particular orientation, higher laterally averaged effectiveness occurred at lower channel Reynolds numbers and with the hole having a short metering length.

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Marc Fraas ◽  
Tobias Glasenapp ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer

Internal coolant passages of gas turbine vanes and blades have various orientations relative to the external hot gas flow. As a consequence, the inflow of film cooling holes varies as well. To further identify the influencing parameters of film cooling under varying inflow conditions, the present paper provides detailed experimental data. The generic study is performed in a novel test rig, which enables compliance with all relevant similarity parameters including density ratio. Film cooling effectiveness as well as heat transfer of a 10–10–10 deg laidback fan-shaped cooling hole is discussed. Data are processed and presented over 50 hole diameters downstream of the cooling hole exit. First, the parallel coolant flow setup is discussed. Subsequently, it is compared to a perpendicular coolant flow setup at a moderate coolant channel Reynolds number. For the perpendicular coolant flow, asymmetric flow separation in the diffuser occurs and leads to a reduction of film cooling effectiveness. For a higher coolant channel Reynolds number and perpendicular coolant flow, asymmetry increases and cooling effectiveness is further decreased. An increase in blowing ratio does not lead to a significant increase in cooling effectiveness. For all cases investigated, heat transfer augmentation due to film cooling is observed. Heat transfer is highest in the near-hole region and decreases further downstream. Results prove that coolant flow orientation has a severe impact on both parameters.


Author(s):  
Shane Haydt ◽  
Stephen Lynch

Film cooling holes are a well-established cooling technique used in gas turbines to keep component metal temperatures in an acceptable range. A streamwise-oriented film cooling hole creates a symmetric counter-rotating vortex pair (CRVP) due to the jet interaction with the crossflow. As the orientation of the film cooling hole is incrementally misaligned with the streamwise direction (known as a compound angle), one of the vortices in the CRVP gains strength at the expense of the other until there is a single streamwise vortex that dominates the flowfield. This vortex diffuses the coolant jet and impinges hot gas onto the surface, which can augment heat transfer coefficients in a region uncovered by coolant. Although this has been well studied for cylindrical holes, there is less understanding about the nature of this phenomenon for shaped holes, which are intended to diffuse coolant laterally to minimize flowfield interaction. In the present study, particle image velocimetry (PIV) was used to measure the flowfield of compound angled shaped film cooling holes at several downstream planes normal to the streamwise direction. Five compound angled 7-7-7 holes were tested, from a streamwise oriented hole (0° compound angle) to a 60° compound angle hole, in increments of 15°. All cases were tested at a density ratio of 1.0 and blowing ratios ranging from 1.0 to 4.0. Experimental data shows that the circulation increases as compound angle increases because the flowfield transitions from a CRVP to a single streamwise vortex. For large compound angles, the streamwise vortex lifts the core of the jet off of the surface, isolating the coolant from the endwall. Measurements also indicate hole-to-hole interaction downstream for cases with high blowing ratio and large compound angle. Flowfield results are compared with adiabatic effectiveness results from a companion study in order to explain hole-to-hole interaction trends.


2013 ◽  
Vol 740 ◽  
pp. 830-835
Author(s):  
Ping Dai ◽  
Nai Yun Yu

The development of a new generation of high performance aircraft turbine jet engine desires gas turbines to be operated at very high rotor inlet gas temperatures. This brings a problem on the effective cooling of turbine blades. Up to now, modified film cooling is still an effective cooling technique. The influence of air-film hole structures on the air-film cooling efficiency cant be ignored. A survey of the research results concerning novel air-film cooling hole about home and abroad were given and high efficiency crescent air-film hole geometry was put forward. Through a comparative study of film cooling characteristic with cylindrical air-film hole and forward diffused air-film hole and crescent air-film hole found effectiveness of the crescent air-film hole was superior to other air-film holes in various blowing ratios. The crescent air-film hole could greatly reduce the kidney vortex intensity, and then enhanced the air-film cooling effectiveness.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Shane Haydt ◽  
Stephen Lynch ◽  
Scott Lewis

Shaped film cooling holes are used extensively in gas turbines to reduce component temperatures. These holes generally consist of a metering section through the material and a diffuser to spread coolant over the surface. These two hole features are created separately using electrical discharge machining (EDM), and occasionally, an offset can occur between the meter and diffuser due to misalignment. The current study examines the potential impact of this manufacturing defect to the film cooling effectiveness for a well-characterized shaped hole known as the 7-7-7 hole. Five meter-diffuser offset directions and two offset sizes were examined, both computationally and experimentally. Adiabatic effectiveness measurements were obtained at a density ratio of 1.2 and blowing ratios ranging from 0.5 to 3. The detriment in cooling relative to the baseline 7-7-7 hole was worst when the diffuser was shifted upstream (aft meter-diffuser offset), and least when the diffuser was shifted downstream (fore meter-diffuser offset). At some blowing ratios and offset sizes, the fore meter-diffuser offset resulted in slightly higher adiabatic effectiveness than the baseline hole, due to a reduction in the high-momentum region of the coolant jet caused by a separation region created inside the hole by the fore meter-diffuser offset. Steady Reynolds-averaging Navier–Stokes (RANS) predictions did not accurately capture the levels of adiabatic effectiveness or the trend in the offsets, but it did predict the fore offset's improved performance.


Author(s):  
Shane Haydt ◽  
Stephen Lynch ◽  
Scott Lewis

Shaped film cooling holes are used extensively in gas turbines to reduce component temperatures. These holes generally consist of a metering section through the material and a diffuser to spread coolant over the surface. These two hole features are created separately using electrical discharge machining, and occasionally an offset can occur between the meter and diffuser due to misalignment. The current study examines the potential impact of this manufacturing defect to the film cooling effectiveness for a well-characterized shaped hole known as the 7-7-7 hole. Five meter-diffuser offset directions and two offset sizes were examined, both computationally and experimentally. Adiabatic effectiveness measurements were obtained at a density ratio of 1.2 and blowing ratios ranging from 0.5 to 3. The detriment in cooling relative to the baseline 7-7-7 hole was worst when the diffuser was shifted upstream (aft meter-diffuser offset), and least when the diffuser was shifted downstream (fore meter-diffuser offset). At some blowing ratios and offset sizes, the fore meter-diffuser offset resulted in slightly higher adiabatic effectiveness than the baseline hole, due to a reduction in the high-momentum region of the coolant jet caused by a separation region created inside the hole by the fore meter-diffuser offset. Steady RANS predictions did not accurately capture the levels of adiabatic effectiveness or the trend in the offsets, but it did predict the fore offset’s improved performance.


Author(s):  
Marc Fraas ◽  
Tobias Glasenapp ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer

Internal coolant passages of gas turbine vanes and blades have various orientations relative to the external hot gas flow. As a consequence, the inflow of film cooling holes varies as well. To further identify the influencing parameters of film cooling under varying inflow conditions, the present paper provides detailed experimental data. The generic study is performed in a novel test rig which enables compliance with all relevant similarity parameters including density ratio. Film cooling effectiveness as well as heat transfer of a 10-10-10deg laidback fan-shaped cooling hole are discussed. Data are processed and presented over 50 hole diameters downstream of the cooling hole exit. First, the parallel coolant flow setup is discussed. Subsequently, it is compared to a perpendicular coolant flow setup at a moderate coolant channel Reynolds number. For the perpendicular coolant flow, asymmetric flow separation in the diffuser occurs and leads to a reduction of film cooling effectiveness. For a higher coolant channel Reynolds number and perpendicular coolant flow, asymmetry increases and cooling effectiveness is further decreased. An increase in blowing ratio does not lead to a significant increase in cooling effectiveness. For all cases investigated, heat transfer augmentation due to film cooling is observed. Heat transfer is highest in the near hole region and decreases further downstream. Results prove that coolant flow orientation has a severe impact on both parameters.


Author(s):  
Yoji Okita ◽  
Chiyuki Nakamata

This paper presents results of a computational study for the endwall film cooling of an annular nozzle cascade employing a circumferentially asymmetric contoured passage. The investigated geometrical parameters and the flow conditions are set consistent with a generic modern HP-turbine nozzle. Rows of cylindrical film cooling holes on the contoured endwall are arranged with a design practice for the ordinary axisymmetric endwall. The solution domain, which includes the mainflow, cooling hole paths, and the coolant plenum, is discretized in the RANS equations with the realizable k-epsilon model. The calculated flow field shows that the pressure gradients across the passage between the pressure and the suction side are reduced with the asymmetric endwall, and consequently, the rolling up of the inlet boundary layer into the passage vortex is delayed and the separation line has moved further downstream. With the asymmetric endwall, because of the effective suppression of the secondary flow, more uniform film coverage is achieved especially in the rear part of the passage and the laterally averaged effectiveness is also significantly improved in this region. The closer inspection of the calculated thermal field reveals that, with the asymmetric passage, the coolant ejected from the holes are less deflected by the secondary vortices, and it attaches better to the endwall in this rear part.


Author(s):  
Sadam Hussain ◽  
Xin Yan

Abstract Film cooling is one of the most critical technologies in modern gas turbine engine to protect the high temperature components from erosion. It allows gas turbines to operate above the thermal limits of blade materials by providing the protective cooling film layer on outer surfaces of blade against hot gases. To get a higher film cooling effect on plain surface, current study proposes a novel strategy with the implementation of hole-pair into ramp. To gain the film cooling effectiveness on the plain surface, RANS equations combined with k-ω turbulence model were solved with the commercial CFD solver ANSYS CFX11.0. In the numerical simulations, the density ratio (DR) is fixed at 1.6, and the film cooling effect on plain surface with different configurations (i.e. with only cooling hole, with only ramp, and with hole-pair in ramp) were numerically investigated at three blowing ratios M = 0.25, 0.5, and 0.75. The results show that the configuration with Hole-Pair in Ramp (HPR) upstream the cooling hole has a positive effect on film cooling enhancement on plain surface, especially along the spanwise direction. Compared with the baseline configuration, i.e. plain surface with cylindrical hole, the laterally-averaged film cooling effectiveness on plain surface with HPR is increased by 18%, while the laterally-averaged film cooling effectiveness on plain surface with only ramp is increased by 8% at M = 0.5. As the blowing ratio M increases from 0.25 to 0.75, the laterally-averaged film cooling effectiveness on plain surface with HPR is kept on increasing. At higher blowing ratio M = 0.75, film cooling effectiveness on plain surface with HPR is about 19% higher than the configuration with only ramp.


1998 ◽  
Vol 120 (2) ◽  
pp. 327-336 ◽  
Author(s):  
K. Thole ◽  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

One viable option to improve cooling methods used for gas turbine blades is to optimize the geometry of the film-cooling hole. To optimize that geometry, effects of the hole geometry on the complex jet-in-crossflow interaction need to be understood. This paper presents a comparison of detailed flowfield measurements for three different single, scaled-up hole geometries, all at a blowing ratio and density ratio of unity. The hole geometries include a round hole, a hole with a laterally expanded exit, and a hole with a forward-laterally expanded exit. In addition to the flowfield measurements for expanded cooling hole geometries being unique to the literature, the testing facility used for these measurements was also unique in that both the external mainstream Mach number (Ma∞ = 0.25) and internal coolant supply Mach number (Mac = 0.3) were nearly matched. Results show that by expanding the exit of the cooling holes, both the penetration of the cooling jet and the intense shear regions are significantly reduced relative to a round hole. Although the peak turbulence level for all three hole geometries was nominally the same, the source of that turbulence was different. The peak turbulence level for both expanded holes was located at the exit of the cooling hole resulting from the expansion angle being too large. The peak turbulence level for the round hole was located downstream of the hole exit where the velocity gradients were very large.


Author(s):  
T. I-P. Shih ◽  
Y.-L. Lin ◽  
M. K. Chyu ◽  
S. Gogineni

Computations were performed to study the three-dimensional flow and heat transfer on a flat plate cooled by jets, injected from a plenum through one row of film-cooling holes in which each hole is fitted with a strut in the form of a circular cylinder. Three different configurations of the film-cooling hole were investigated: without strut, with streamwise strut, and with spanwise strut. For all configurations, the film-cooling holes are inclined at 35°, and the coolant-to-mainflow density and mass-flux ratios are 1.6 and 0.5, respectively. The focus of this study is to understand how struts in holes affect film cooling jets and their interactions with the mainflow in forming a protective layer of cooler fluid over the plate. This computational study is based on the ensemble-averaged conservation equations of mass, momentum (compressible Navier-Stokes), and energy. Effects of turbulence was modeled by a low Reynolds number k-ω closure known as the shear-stress-transport (SST) model. Solutions were generated by a cell-centered finite-volume method that uses third-order accurate flux-difference splitting of Roe with limiters, multigrid acceleration of a diagonalized ADI scheme with local time stepping, and patched/overlapped structured grids. In the computations, the flow is resolved not just in the cooling-jet/mainflow interaction region, but also inside the film-cooling holes and in the plenum. Computed results for adiabatic effectiveness for the case without struts were compared with experimental data, and reasonably good agreements were obtained.


Sign in / Sign up

Export Citation Format

Share Document