scholarly journals A Comprehensive Model to Predict Simplex Atomizer Performance

Author(s):  
Y. Liao ◽  
A. T. Sakman ◽  
S. M. Jeng ◽  
M. A. Jog ◽  
M. Benjamin

The performance of liquid fuel atomizer has direct effects on combustion efficiency, pollutant emission and stability. Pressure swirl atomizer, or simplex atomizer, is widely used in liquid fuel combustion devices in aircraft and power generation industry. A computational, experimental, and theoretical study is conducted to predict its performance. The Arbitrary-Lagrangian-Eulerian method with finite volume scheme is employed in the CFD model. Internal flow characteristics of the simplex atomizer as well as its performance parameters such as discharge coefficient, spray angle and film thickness are predicted. A temporal linear stability analysis is performed for cylindrical liquid sheets under 3-D disturbance. The model incorporates swirling velocity component, finite film thickness and radius which are essential features of conical liquid sheets emanating from simplex atomizers. It is observed that the relative velocity between liquid and gas phase, density ratio and surface curvature enhance the interfacial aerodynamic instability. As Weber number and density ratio increase, both the wave growth rate and the unstable wave number range increase. Combination of axial and swirling velocity components is more effective than single axial component for disintegration of liquid sheet. A breakup model for conical liquid sheet is proposed. Combining the breakup model with linear stability analysis, mean drop sizes are predicted. The theoretical results are compared with measurement data and agreement is very good.

1999 ◽  
Vol 121 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Y. Liao ◽  
A. T. Sakman ◽  
S. M. Jeng ◽  
M. A. Jog ◽  
M. A. Benjamin

The pressure swirl atomizer, or simplex atomizer, is widely used in liquid fuel combustion devices in the aerospace and power generation industries. A computational, experimental, and theoretical study was conducted to predict its performance. The Arbitrary-Lagrangian-Eulerian method with a finite-volume scheme is employed in the CFD model. Internal flow characteristics of the simplex atomizer, as well as its performance parameters such as discharge coefficient, spray angle and film thickness, are predicted. A temporal linear stability analysis is performed for cylindrical liquid sheets under three-dimensional disturbances. The model incorporates the swirling velocity component, finite film thickness and radius that are essential features of conical liquid sheets emanating from simplex atomizers. It is observed that the relative velocity between the liquid and gas phases, density ratio and surface curvature enhance the interfacial aerodynamic instability. The combination of axial and swirling velocity components is more effective than only the axial component for disintegration of liquid sheet. For both large and small-scale fuel nozzles, mean droplet sizes are predicted based on the linear stability analysis and the proposed breakup model. The predictions agree well with experimental data at both large and small scale.


Author(s):  
Yuxin Liu ◽  
Chaojie Mo ◽  
Lujia Liu ◽  
Qingfei Fu ◽  
Lijun Yang

This article presents the linear stability analysis of an electrified liquid sheet injected into a compressible ambient gas in the presence of a transverse electric field. The disturbance wave growth rates of sinuous and varicose modes were determined by solving the dispersion relation of the electrified liquid sheet. It was determined that by increasing the Mach number of the ambient gas from subsonic to transonic, the maximum growth rate and the dominant wave number of the disturbances were increased, and the increase was greater in the presence of the electric field. The electrified liquid sheet was more unstable than the non-electrified sheet. The increase of both the gas-to-liquid density ratio and the electrical Euler number accelerated the breakup of the liquid sheet for both modes; while the ratio of distance between the horizontal electrode and the liquid-sheet-to-sheet thickness had the opposite effect. High Reynolds and Weber numbers accelerated the breakup of the electrified liquid sheet.


2010 ◽  
Vol 26 (6) ◽  
pp. 1212-1225 ◽  
Author(s):  
Li-jun Yang ◽  
Yuan-yuan Qu ◽  
Qing-fei Fu ◽  
Bin Gu ◽  
Feng Wang

2021 ◽  
Vol 927 ◽  
Author(s):  
Romain Canu ◽  
Marie-Charlotte Renoult

We performed a linear stability analysis of a Newtonian ferrofluid cylinder surrounded by a Newtonian non-magnetic fluid in an azimuthal magnetic field. A wire is used at the centre of the ferrofluid cylinder to create this magnetic field. Isothermal conditions are considered and gravity is ignored. An axisymmetric perturbation is imposed at the interface between the two fluids and a dispersion relation is obtained allowing us to predict whether the flow is stable or unstable with respect to this perturbation. This relation is dependent on the Ohnesorge number of the ferrofluid, the dynamic viscosity ratio, the density ratio, the magnetic Bond number, the relative magnetic permeability and the dimensionless wire radius. Solutions to this dispersion relation are compared with experimental data from Arkhipenko et al. (Fluid Dyn., vol. 15, issue 4, 1981, pp. 477–481) and, more recently, Bourdin et al. (Phys. Rev. Lett., vol. 104, issue 9, 2010, 094502). A better agreement than the inviscid theory and the theory that only takes into account the viscosity of the ferrofluid is shown with the data of Arkhipenko et al. (Fluid Dyn., vol. 15, issue 4, 1981, pp. 477–481) and those of Bourdin et al. (Phys. Rev. Lett., vol. 104, issue 9, 2010, 094502) for small wavenumbers.


2012 ◽  
Vol 22 (11) ◽  
pp. 951-982 ◽  
Author(s):  
Li-Jun Yang ◽  
Yu-Xin Liu ◽  
Qing-Fei Fu ◽  
Chen Wang ◽  
Yan Ning

2007 ◽  
Vol 582 ◽  
pp. 341-376 ◽  
Author(s):  
JOSEPH W. NICHOLS ◽  
PETER J. SCHMID ◽  
JAMES J. RILEY

The stability properties of round variable-density low-Mach-number jets are studied by means of direct numerical simulation (DNS) and linear stability analysis. Fully three-dimensional DNS of variable-density jets, with and without gravity, demonstrate that the presence of buoyancy causes a more abrupt transition to turbulence. This effect helps to explain differences between normal gravity and microgravity jet diffusion flames observed in the laboratory.The complete spectrum of spatial eigenmodes of the linearized low-Mach-number equations is calculated using a global matrix method. Also, an analytic form for the continuous portion of this spectrum is derived, and used to verify the numerical method. The absolute instability of variable-density jets is confirmed using Brigg's method, and a comprehensive parametric study of the strength and frequency of this instability is performed. Effects of Reynolds number, the density ratio of ambient-to-jet fluid (S1), shear-layer thickness and Froude number are considered. Finally, a region of local absolute instability is shown to exist in the near field of the jet by applying linear stability analysis to mean profiles measured from DNS.


2010 ◽  
Vol 26 (5) ◽  
pp. 955-968 ◽  
Author(s):  
Qing-Fei Fu ◽  
Li-Jun Yang ◽  
Yuan-Yuan Qu ◽  
Bin Gu

2021 ◽  
Vol 44 (11) ◽  
Author(s):  
Kuntal Patel ◽  
Holger Stark

Abstract Flows at moderate Reynolds numbers in inertial microfluidics enable high throughput and inertial focusing of particles and cells with relevance in biomedical applications. In the present work, we consider a viscosity-stratified three-layer flow in the inertial regime. We investigate the interfacial instability of a liquid sheet surrounded by a density-matched but more viscous fluid in a channel flow. We use linear stability analysis based on the Orr–Sommerfeld equation and direct numerical simulations with the lattice Boltzmann method (LBM) to perform an extensive parameter study. Our aim is to contribute to a controlled droplet production in inertial microfluidics. In the first part, on the linear stability analysis we show that the growth rate of the fastest growing mode $$\xi ^{*}$$ ξ ∗ increases with the Reynolds number $$\text {Re}$$ Re and that its wavelength $$\lambda ^{*}$$ λ ∗ is always smaller than the channel width w for sufficiently small interfacial tension $$\Gamma $$ Γ . For thin sheets we find the scaling relation $$\xi ^{*} \propto mt^{2.5}_{s}$$ ξ ∗ ∝ m t s 2.5 , where m is viscosity ratio and $$t_{s}$$ t s the sheet thickness. In contrast, for thicker sheets $$\xi ^{*}$$ ξ ∗ decreases with increasing $$t_s$$ t s or m due to the nearby channel walls. Examining the eigenvalue spectra, we identify Yih modes at the interface. In the second part on the LBM simulations, the thin liquid sheet develops two distinct dynamic states: waves traveling along the interface and breakup into droplets with bullet shape. For smaller flow rates and larger sheet thicknesses, we also observe ligament formation and the sheet eventually evolves irregularly. Our work gives some indication how droplet formation can be controlled with a suitable parameter set $$\{\lambda ,t_{s},m,\Gamma ,\text {Re}\}$$ { λ , t s , m , Γ , Re } . Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document