relative magnetic permeability
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 67 (3) ◽  
pp. 279-297
Author(s):  
Zhiqiang Xiong ◽  
Jin Yao

A novel squirrel cage eddy current coupling with adjustable radial air gap was presented, which can change the output speed by changing the air gap thickness in radial direction between the copper strips and the permanent magnet. It has the advantages of no axial force in speed regulation and less eccentric force in axisymmetric structure. The 2-D electromagnetic torque model of the rotor was established, and the influence of the air gap thickness on the electromagnetic torque was also studied by finite element method. Further, a novel method to solve the dynamic equation of the eddy current coupling was proposed based on the effect of air gap thickness and relative speed on torque characteristics, and was applied to the speed regulation performance analysis. In addition, the influence of the relative magnetic permeability of the permanent magnet back yoke and the internal rotor on the speed regulation performance was studied.


2021 ◽  
Vol 927 ◽  
Author(s):  
Romain Canu ◽  
Marie-Charlotte Renoult

We performed a linear stability analysis of a Newtonian ferrofluid cylinder surrounded by a Newtonian non-magnetic fluid in an azimuthal magnetic field. A wire is used at the centre of the ferrofluid cylinder to create this magnetic field. Isothermal conditions are considered and gravity is ignored. An axisymmetric perturbation is imposed at the interface between the two fluids and a dispersion relation is obtained allowing us to predict whether the flow is stable or unstable with respect to this perturbation. This relation is dependent on the Ohnesorge number of the ferrofluid, the dynamic viscosity ratio, the density ratio, the magnetic Bond number, the relative magnetic permeability and the dimensionless wire radius. Solutions to this dispersion relation are compared with experimental data from Arkhipenko et al. (Fluid Dyn., vol. 15, issue 4, 1981, pp. 477–481) and, more recently, Bourdin et al. (Phys. Rev. Lett., vol. 104, issue 9, 2010, 094502). A better agreement than the inviscid theory and the theory that only takes into account the viscosity of the ferrofluid is shown with the data of Arkhipenko et al. (Fluid Dyn., vol. 15, issue 4, 1981, pp. 477–481) and those of Bourdin et al. (Phys. Rev. Lett., vol. 104, issue 9, 2010, 094502) for small wavenumbers.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4201
Author(s):  
David Demetz ◽  
Alexander Sutor

In this paper, we present a methodology for locating wireless sensors for the use in photoreactors. Photoreactors are, e.g., used to cultivate photosynthetic active microorganisms. For measuring important parameters like, e.g., the temperature inside the reactor, sensors are needed. Wireless locatable floating sensors would enable it to measure the data anywhere inside the reactor and to get a spatial resolution of the registered data. Due to the well defined propagation properties of magnetic fields and the fact that they are not significantly influenced in underwater environments when using low frequencies, a magnetic induction (MI) system is chosen for the data transmission as well as for the localization task. We designed an inductive transmitter and a receiver capable of measuring the magnetic field in every three spatial directions. The transmitting frequency is set at approx. 300kHz. This results in a wavelength of approx. 1km which clearly exceeds the dimensions of our measurement setup where the transmitter–receiver distances in general are lower than one meter. Due to this fact, only the quasi-static field component has to be considered and the location of the transmitter is calculated by measuring its magnetic field at defined positions and in using the magnetic dipole field equation in order to model its magnetic field geometry. The used measurement setup consists of a transmitter and two receivers. The first measurements were performed without a water filled photoreactor since no differences in the propagation criteria of magnetic fields are expected due to the negligibly low differences in the relative magnetic permeability of water and air. The system is calibrated and validated by using a LIDAR depth camera that is also used to locate the transmitter. The transmitter positions measured with the camera are therefore compared with the inductively measured ones.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 819
Author(s):  
Changsheng Li ◽  
Kun Li ◽  
Jingbo Dong ◽  
Jinyi Ren ◽  
Yanlei Song

The effect of aging on the precipitates, mechanical and magnetic properties of Fe-21Cr-15Ni-6Mn-Nb low magnetic stainless steel were investigated. The steel was aged at 550–750 °C for 2 h after solution heat treatment at 1100 °C for 1 h. During the aging treatment, the (Nb, V)(C, N) particles gradually precipitated in the grain, which were coherent or semi-coherent with the matrix. When the aging temperature was beyond 650 °C, the coarsening rate of (Nb, V)(C, N) particles increase rapidly and the coherent orientation between (Nb, V)(C, N) particles and the matrix was lost gradually. Meanwhile, coarse M23C6 was distributed at the grain boundary with chain shape, which was non-coherent with the matrix. The coarsening behavior of (Nb, V)(C, N) precipitates in the grain was analyzed, and the size of the particles precipitated after aging treatment at 650°C for different time was calculated and studied. After aging treatment at 650 °C for 2 h, the yield strength and tensile strength of the stainless steel was 705.6 MPa and 1002.3 MPa, the elongation and the relative magnetic permeability was 37.8% and 1.0035, respectively.


Author(s):  
А.В. Володько ◽  
С.М. Фёдоров ◽  
Е.А. Ищенко ◽  
М.А. Сиваш ◽  
Л.В. Сопина ◽  
...  

Исследуется зависимость эффективной площади рассеяния (ЭПР) от относительной магнитной проницаемости материала, из которого изготавливается структура. В качестве тела моделирования был выбран шар, который изготовлен из диэлектрического материала, у которого возможно выполнять изменение относительной магнитной проницаемости. По полученным результатам моделирования построены графики зависимости максимального значения моностатической ЭПР от частоты, а также от относительной магнитной проницаемости среды. Было показано, что с увеличением относительной магнитной проницаемости материала изготовления происходит увеличение значения ЭПР объекта, а также обнаружена зависимость эффективной площади рассеяния от соотношения размеров шара и длиной волны, так при превышении порогового значения, после которого шар становится крупным объектом, ЭПР резко возрастает. По результатам исследования был построен график зависимости эффективной площади рассеяния шара от относительной магнитной проницаемости материала изготовления. Доказана возможность применения материала с частотозависимой относительной магнитной проницаемостью в качестве стелс-покрытия. В статье содержится исследуемая модель, графики полученных результатов, по которым можно легко определить зависимость ЭПР от частоты и от относительной магнитной проницаемости материала изготовления The article investigates the dependence of the effective scattering area (ESA) on the relative magnetic permeability of the material from which the structure is made. We chose a sphere as the modeling body, which is made of a dielectric material, in which it is possible to change the relative magnetic permeability. Based on the obtained simulation results, graphs of the dependence of the maximum value of monostatic ESA on frequency, as well as on the relative magnetic permeability of the medium, were constructed. It was shown that with an increase in the relative magnetic permeability of the material of manufacture, an increase in the value of the ESA of the object occurs, and the dependence of the effective scattering area on the ratio of the size of the ball and the wavelength was found, so when the threshold value is exceeded, after which the ball becomes a large object, ESA rises sharply. Based on the results of the study, a graph of the dependence of the effective scattering area of the sphere on the relative magnetic permeability of the material of manufacture was built. The possibility of using a material with a frequency-dependent relative magnetic permeability as a stealth coating was proven. The article contains the investigated model, graphs of the results obtained, by which it is easy to determine the dependence of the ESA on the frequency and on the relative magnetic permeability of the material of manufacture


2021 ◽  
Author(s):  
Bernd-Arno Behrens ◽  
Hendrik Wester ◽  
Stefan Schäfer ◽  
Christoph Büdenbender

Multi-material solutions offer benefits, as they, in contrary to conventional monolithic parts, are customised hybrid components with properties that optimally fit the application locally. Adapted components offer the possibility to use high strength material in areas where external loads require it and substitute them by lightweight material in the other areas. The presented study describes the manufacturing of a hybrid shaft along the process chain Tailored Forming, which uses serial pre-joined semi-finished products in the forming stage. Subject of this study is the numerical modelling of the heating process by induction heating of a hybrid semi-finished product and the resulting material distribution after the impact extrusion process. For this endeavour, a numerical model of an inhomogeneous induction heating process was developed. The main challenge is to determine the boundary conditions such as current intensity acting in the induction coil and the electromagnetic properties of the used material. The current intensity was measured by a Rogowski coil during experimental heating tests. The relative magnetic permeability was modelled as a function of temperature using the method of Zedler. The results show the importance of using a relative magnetic permeability as a function of temperature to guarantee a high quality of the numerical model. Subsequently, the model was applied to the heating of the hybrid semi-finished product consisting of a steel and aluminium alloy. By using inductive heating and thus a resulting inhomogeneous temperature field, good agreement of the material distribution between experiment and simulation could be achieved after the forming process.


2021 ◽  
Vol 11 (5) ◽  
pp. 2182
Author(s):  
Azouaou Berkache ◽  
Jinyi Lee ◽  
Eunho Choe

This paper deals with investigation and characterization of weld circumferential thin cracks in austenitic stainless steel (AISI 304) pipe with eddy current nondestructive testing technique (EC-NDT). During welding process, the heat source applied to the AISI 304 was not uniform, accompanied by a change of the physical property. To take into consideration this change, the relative magnetic permeability was considered as a gradiently changed variable in the weld and the heat affected zone (HAZ), which was generated by the Monte Carlo Method based on pseudo random number generation (PRNG). Numerical simulations were performed by means of MATLAB software using 2D finite element method to solve the problem. To verify, results from the modeling works were conducted and contrasted with findings from experimental ones. Indeed, the results of comparison agreed well. In addition, they show that considering this changing of this magnetic property allows distinguishing the thin cracks in the weld area.


2021 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Björn Beckschwarte ◽  
Lasse Langstädtler ◽  
Christian Schenck ◽  
Marius Herrmann ◽  
Bernd Kuhfuss

In electromagnetic forming of thin sheet metal, the die is located within the effective range of the electromagnetic wave. Correspondingly, a current is induced not only in the sheet metal, but also in the die. Like the current in the workpiece, also the current in the die interacts with the electromagnetic wave, resulting in Lorentz forces and changes of the electromagnetic field. With the aim to study the influence of different electromagnetic die properties in terms of specific electric resistance and relative magnetic permeability, electromagnetic simulations were carried out. A change in the resulting forming forces in the sheet metals was determined. To confirm the simulation results, electromagnetic forming and embossing tests were carried out with the corresponding die materials. The results from simulation and experiment were in good agreement.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wen-Rong Si ◽  
Chen-Zhao Fu ◽  
Xu-Tao Wu ◽  
Xiu Zhou ◽  
Xiu-Guang Li ◽  
...  

Transformer is one of the most important pieces of equipment in power system. The insulation aging and lifespan of transformer are significantly affected by hot spot distributions of internal components inside. In the present paper, the electromagnetic losses of different components and heat transfer process in a three-phase forced oil circulation transformer (400 kVA-15 kV/400 V) are numerically studied with finite element method. The leakage magnetic flux and eddy current loss density for metal components and oil tank are carefully analyzed, and the effect of metal components’ electromagnetic loss on hot spot temperature of different components and oil flow in transformer is also studied. It is found that the surface current of metal components is generated by leakage magnetic flux, and surface current density is large when leakage magnetic flux concentrates. The effect caused by relative magnetic permeability of metal components is remarkable on electromagnetic loss of metal components and oil tank, while the effect caused by relative magnetic permeability of transformer tank is relatively small. Due to the mixing of metal components on oil flow, the heat transfer of core is enhanced, its hot spot temperature is lowered, and the hot spot locations of coil and core also change. These results are meaningful for further understanding of heat transfer process in transformer and important for the optimal design of transformer.


Sign in / Sign up

Export Citation Format

Share Document