scholarly journals An Experimental Study on the Aerodynamics and the Heat Transfer of a Suction Side Film Cooled Large Scale Turbine Cascade

Author(s):  
Wolfgang Ganzert ◽  
Leonhard Fottner

As a part of a more complex research program systematic isothermal investigations on the aerodynamics and heat transfer of a large scale turbine cascade with suction side film cooling were carried out. The film cooling through a row of holes at forty percent chord length on the suction side was supplied by a large plenum chamber. Two injection geometries were hitherto tested and evaluated: cylindrical holes with thirty respectively fifty degrees axial inclination angle and no lateral inclination. Typical engine conditions for the Mach and Reynolds number as well as the inlet turbulence level were maintained. The aerodynamic studies are based on steady state pressure measurements. The static profile pressure distribution together with oil-and-dye flow visualisation gives information on the surface flow conditions and boundary layer development especially in the near hole region. The measured data also comprise local and integral total pressure loss coefficients obtained by pressure probe traversing at mid span downstream of the cascade. The heat transfer examination set-up is based on the steady state liquid crystal technique using a compound of a thermochromic sheet combined with an electrical surface heating layer attached on an adiabatic blade corpus. Two dimensional pseudo colour plots are used for the documentation of the local surface heat transfer coefficient distribution and hot spot estimation. Laterally averaged and statistically analysed data of the surface heat transfer is applied in overall heat transfer examinations. All this data is used for a joint aerodynamic flow and surface heat transfer optimisation of a blowing configuration in suction side film cooled turbine cascade. The most important conclusions can be summarised as follows: Aiming at an optimised design of cylindrical film cooling configurations the axial inclination of the holes should be kept low thus diminishing the suction peak value at the cooling position in the profile pressure distribution and decreasing the mainstream deceleration area upstream of the jets. This also leads to reduced total pressure losses. Through the high influence of the blowing on the aerodynamics the flow in the near hole mixing region is highly three-dimensional. This shows significant effects in the two-dimensional surface distribution and the laterally averaged heat transfer coefficient. Oil-and-dye pictures confirm the observations qualitatively.

Author(s):  
Wolfgang Ganzert ◽  
Thomas Hildebrandt ◽  
Leonhard Fottner

As a part of a systematic research program isothermal investigations on the aerodynamics and the heat transfer of a large scale turbine cascade with suction side film cooling with shaped holes and compound inclination were carried out. The film cooling through a row of holes at forty percent chord length on the suction side was supplied by a large plenum chamber. The axial component inclination was kept constant at 30°. All holes have a cylindrical inlet combined with a shaped outlet. Three injection geometries were tested. The first two investigated configurations had no lateral inclination. The hole geometries can be briefly described as follows: Fan-shaped holes with lateral expansion, fan-shaped holes with lateral expansion and streamwise laid-back. The last investigation combined the most complex hole shape with a lateral hole inclination of 45°. Typical engine conditions for the Mach and Reynolds number as well as the inlet turbulence level were maintained. Due to hardware limitations the total temperature was set to 303 Kelvin. The measured data comprise local and integral total pressure loss coefficients obtained by pressure probe traversing at midspan downstream of the cascade. The static profile pressure distribution together with oil-and-dye flow visualisation gives information on the surface flow conditions and boundary layer development especially in the near hole region. Three dimensional hot wire anemometry is used for detailed flow measurements in the hole region. Based on the steady state liquid crystal heat transfer measurement technique pseudo colour contour plots are used for the documentation of the local surface heat transfer coefficient distribution. Laterally averaged and statistically analysed data of the surface heat transfer is applied in further heat transfer examinations. The aim of all investigations is an aerodynamical optimisation of film cooling configurations taking into account the thermal aspects. The most important conclusions can be summarised as follows: Compared to cylindrical holes with the same axial injection angle, shaped holes have a tremendous influence on the flow type in the near hole region. This leads to a more homogeneous pattern of the suction side heat transfer coefficient. The combination of shaped holes and lateral inclination induces definitely higher losses downstream of the cascade compared to the case with no inclination. Due to the lateral injection the former symmetrical vortex branches downstream of the hole are increased asymmetrically. This leads to higher mean heat transfer coefficients in the near hole region downstream of the injection. On the other side laterally blowing increases the homogeneity of the heat transfer coefficient.


2001 ◽  
Vol 124 (1) ◽  
pp. 142-151 ◽  
Author(s):  
In Sung Jung ◽  
Joon Sik Lee ◽  
P. M. Ligrani

Experiments are conducted to investigate the effects of bulk flow pulsations on film cooling from compound angle holes. A row of five film cooling holes is employed with orientation angles of 0, 30, 60, and 90 deg at a fixed inclination angle of 35 deg. Static pressure pulsations are generated using an array of six rotating shutter blades, which extend across the span of the exit of the wind tunnel test section. Pulsation frequencies of 0 Hz, 8 Hz, and 36 Hz, and time-averaged blowing ratios of 0.5, 1.0, and 2.0 are employed. Corresponding coolant Strouhal numbers based on these values then range from 0.20 to 3.6. Spatially resolved surface heat transfer coefficient distributions are measured (with the film and freestream at the same temperature) using thermochromic liquid crystals. Presented are ratios of surface heat transfer coefficients with and without film cooling, as well as ratios of surface heat flux with and without film cooling. These results, for compound angle injection, indicate that the pulsations cause the film to be spread more uniformly over the test surface than when no pulsations are employed. This is because the pulsations cause the film from compound angle holes to oscillate in both the normal and spanwise directions after it leaves the holes. As a result, the pulsations produce important changes to spatially resolved distributions of surface heat flux ratios, and surface heat transfer coefficient ratios. In spite of these alterations, only small changes to spatially averaged heat transfer coefficient ratios are produced by the pulsations. Spatially averaged surface heat flux ratios, on the other hand, increase considerably at coolant Strouhal numbers larger than unity, with higher rates of increase at larger orientation angles.


Author(s):  
Douglas R. Thurman ◽  
Lamyaa A. El-Gabry ◽  
Philip E. Poinsatte ◽  
James D. Heidmann

The second of a two-part paper, this study focuses on the temperature field and surface heat transfer measurements on a large-scale models of an inclined row of film cooling holes. Detailed surface and flow field measurements were taken and presented in Part I. The model consists of three holes of 1.9-cm diameter that are spaced 3 hole diameters apart and inclined 30° from the surface. Additionally, another model with an anti-vortex adaptation to the film cooling holes is also tested. The coolant stream is metered and cooled to 20°C below the mainstream temperature. A thermocouple is used to obtain the flow temperatures along the jet centerline and at various streamwise locations. Steady state liquid crystal thermography is used to obtain surface heat transfer coefficients. Results are obtained for blowing ratios of up to 2 in order to capture off-design conditions in which the jet is lifted. Film cooling effectiveness values of 0.4 and 0.15 were found along the centerline for blowing ratios of 1 and 2 respectively. In addition, an anti-vortex design was tested and found to have improved film effectiveness. This paper presents the detailed temperature contours showing the extent of mixing between the coolant and freestream and the local heat transfer results.


Author(s):  
In Sung Jung ◽  
Joon Sik Lee ◽  
P. M. Ligrani

Experiments are conducted to investigate the effects of bulk flow pulsations on film cooling from compound angle holes. A row of five film cooling holes is employed with orientation angles of 0°, 30°, 60°, and 90° at a fixed inclination angle of 35°. Static pressure pulsations are generated using an array of six rotating shutter blades, which extend across the span of the exit of the wind tunnel test section. Pulsation frequencies of 0 Hz, 8 Hz, and 36 Hz, and time-averaged blowing ratios of 0.5, 1.0, and 2.0 are employed. Corresponding coolant Strouhal numbers based on these values then range from 0.20 to 3.6. Spatially-resolved surface heat transfer coefficient distributions are measured (with the film and freestream at the same temperature) using thermochromic liquid crystals. Presented are ratios of surface heat transfer coefficients with and without film cooling, as well as ratios of surface heat flux with and without film cooling. These results, for compound angle injection, indicate that the pulsations cause the film to be spread more uniformly over the test surface than when no pulsations are employed. This is because the pulsations cause the film from compound angle holes to oscillate in both the normal and spanwise directions after it leaves the holes. As a result, the pulsations produce important changes to spatially-resolved distributions of surface heat flux ratios, and surface heat transfer coefficient ratios. In spite of these alterations, only small changes to spatially-averaged heat transfer coefficient ratios are produced by the pulsations. Spatially-averaged surface heat flux ratios, on the other hand, increase considerably at coolant Strouhal numbers larger than unity, with higher rates of increase at larger orientation angles.


2013 ◽  
Vol 275-277 ◽  
pp. 83-86
Author(s):  
Chun Lin Zhang ◽  
Nian Su Hu ◽  
Wen Yang ◽  
Jian Mei Wang ◽  
Min Li ◽  
...  

With the development of the power grid, the proportion of large capacity unit is increasing rapidly. It requires a more in-depth study on the reliability of the unit, especially for the unit adjusting the peak. This paper concerned on the research of the surface heat transfer coefficient, which is the key factor affect the precision in thermal stress analysis. The surface heat transfer coefficient is obtained via the numerical calculation for the steam’s flow state and the transient heat transfer between rotor. This paper mainly describes the steam’s flow state and the transient heat transfer with the steam seal, and the results show that the direct numerical calculation is resultful in this subject.


Sign in / Sign up

Export Citation Format

Share Document