Search of High Efficiency Design by Another Specific Speed Design

Author(s):  
Takuji Tsugawa

Abstract Quite a lot of design parameters exist when the designer designs the best performance impeller and guidevane. Finally, it is necessary to decide the detail 3D shape of impeller and guidevane. The best flow conditions of the flow velocity and the flow angle at the impeller inlet and outlet are designed as first step before impeller detailed 3D shape is designed. The detailed 3D shape is not necessary in this study. The optimum meridian shape has been found, assuming that the total loss head is addition of the blade-to-blade diffusion loss head and the hub-tip axial-symmetrical annular surface friction loss head. That is, the meridian shape is mainly decided depending on the blade-to-blade flow condition on hub surface, mean surface and tip surface. Main design parameters that decide the meridian shape is built in the loss head equation by diffusion factor and all the design parameters relate closely respectively. The value of the design parameters can be set at random for loss head calculation in a usual optimization technique. But, the loss head in the combination of the limited value design parameters can be calculated in this method. Therefore, the great change of design parameter value is not permitted in this optimum process, and the increment of all the design parameters is set respectively and the optimization of the design parameter is advanced from an initial value of the design parameters changing the value of design parameters little by little. Therefore, there is a possibility that the best solution becomes a local best solution and the influence of an initial condition value cannot be removed. In this method, it is necessary for coming out from the local best solution that the value of all the design parameters changes from an initial value to a largely different value. The specific speed influences all the other design parameters. So, the specific speed is changed gradually in restriction optimum process. In FEDSM2014-21030, the impeller blade number was assumed to be a variable real number design parameter and the specific speed that was the specification as constant value become a variable design parameter equally to other design parameters. In AJK2015-09034, the impeller outlet diameter and impeller rotational speed were assumed to be a variable optimum design parameters. As a result, all the design parameters became variable. Optimization was executed from two different initial conditions to study the initial value dependency whether the obtained two optimum solution became the same. In FEDSM2016-7518, one initial value of the specific speed was assumed to be 916 and it was confirmed to obtain the solution from the specific speed 200 to the specific speed 3000 as the variable wide range design parameter by restriction. The design parameter of mixed flow angle of impeller inlet was not change at the beginning of calculation and changed rapidly in the latter half of the calculation. The cause of the mixed flow angle of impeller inlet value jump was uncertainty. In FEDSM2017-69024, the influence of the surface roughness of the axial-symmetrical hub and tip wall was examined. The impeller blade number, the guidevane blade number and mixed flow angle of impeller inlet were able to change by restriction, and the influence of the impeller blade number and the guidevane blade number was examined. The mixed flow angle of impeller inlet was assumed 0 degrees (axial-flow) to avoid the parameter value jump. In this paper, the specific speed design parameter become the restriction design parameter. The specific speed as restriction parameter has been changed from the lower bound value to the upper bound value to come out from a local best solution. The efficiency extended to the specific speed whole area is able to be improved by the influence of the another middle specific speed with the highest efficiency. It is found that the value of the change increment at the specific speed as restriction parameter is important very much executed by the several kind of specific speed increment. In order to improve the design parameters of traditional impeller and guidevane in the future, it is convenient that total head and flow rate are new optimum design parameters instead of impeller outlet diameter and impeller rotational speed. The impeller rotational speed can be calculated by specific speed and total head.

Author(s):  
Takuji Tsugawa

In previous study of optimum meridian profile of impeller and guide-vane, almost all design parameters included in the specific speed and blade number are variable design parameters in optimum process. As the result, optimum specific speed and blade number were obtained. In the calculation, loss calculation consists of blade-to-blade diffusion loss and axial-symmetrical annular wall friction loss. The calculation result without annular friction loss head isn’t affected by normal diameter and rotational speed. In consideration of diffusion loss and annular friction loss, the result of calculation is affected by normal diameter and rotational speed. In this case study, normal diameter and rotational speed are also variable design parameters. The normal diameter is mid span impeller outlet diameter. So, normal velocity is peripheral velocity of mid span impeller outlet. The initial normal diameter is 100mm and the initial rotational speed is 1000min−1. And then, design parameters and all specification become variable. As there isn’t constant design parameter in this case study, there is no restriction in optimum process. As there is no restriction in optimum process, the best one optimum meridian profile can be obtained. In one case, the object function contains the efficiency and suction specific speed. In the other case, the object function contains the only efficiency. As the result, the optimum meridian profile of impeller and guide-vane can be obtained in each case.


2000 ◽  
Vol 122 (2) ◽  
pp. 345-348 ◽  
Author(s):  
Steven M. Miner

This paper presents the results of a study using coarse grids to analyze the flow in the impellers of an axial flow pump and a mixed flow pump. A commercial CFD code (FLOTRAN) is used to solve the 3-D Reynolds Averaged Navier Stokes equations in a rotating cylindrical coordinate system. The standard k−ε turbulence model is used. The meshes for this study use 22,000 nodes and 40,000 nodes for the axial flow impeller, and 26,000 nodes for the mixed flow impeller. Both models are run on a SPARCstation 20. This is in contrast to typical analyses using in excess of 100,000 nodes. The smaller mesh size has advantages in the design environment. Stage design parameters for the axial flow impeller are, rotational speed 870 rpm, flow coefficient ϕ=0.13, head coefficient ψ=0.06, and specific speed 2.97 (8101 US). For the mixed flow impeller the parameters are, rotational speed 890 rpm, flow coefficient ϕ=0.116, head coefficient ψ=0.094, and specific speed 2.01 (5475 US). Evaluation of the models is based on a comparison of circumferentially averaged results to measured data for the same impeller. Comparisons to measured data include axial and tangential velocities, static pressure, and total pressure. A comparison between the coarse and fine meshes for the axial flow impeller is included. Results of this study show that the computational results closely match the shapes and magnitudes of the measured profiles, indicating that coarse CFD models can be used to accurately predict performance. [S0098-2202(00)02202-1]


Author(s):  
Takuji Tsugawa

It is usually thought that the axial impeller is used for high specific speed impeller and the radial impeller is used for low specific speed impeller. In the previous paper, the optimum meridian profile of axial impeller and radial impeller were obtained for various specific speed by means of the optimization of four shape factors using diffusion factor. The four shape factors were inlet relative flow angle β1, turning angle Δβ, axial velocity ratio (meridian velocity ratio) kc = Cm2/Cm1 and impeller diameter ratio kd = D1c/D2c in mid span stream surface. In case of axial impeller, the optimum meridian profiles agreed with meridian profiles of conventional impellers. To develop the radial high specific speed impeller, the optimum four shape factors of radial high specific speed impellers were calculated by diffusion factor. And the optimum meridian profiles of radial high specific speed impellers were proposed. In case of the radial impeller, the hub diameter is equal to the tip diameter in impeller outlet (the outlet hub-tip ratio is 1.0). And in axial impeller, the outlet blade height depends on the outlet hub-tip ratio. On the other hand, in mixed flow impeller, the outlet hub-tip ratio is various and the outlet blade height is independent of the outlet hub-tip ratio. To obtain the optimum meridian profile of mixed flow impeller, the hub-tip ratio of impeller outlet ν2 is adopted new additional independent shape factor for optimization in this paper. The mixed flow angle on tip meridian stream line (= 0 degree in axial impeller, = 90 degrees in radial impeller) isn’t able to be decided by this optimization using diffusion factor. But, the mixed flow angle will be decided by the number of blade and solidity. And, it will be decided by meridian velocity distribution from hub to tip for each specific speed of impeller. So, in this paper the five shape factors are used for optimization by diffusion factor. (β1, Δβ, kc, kd, ν2) The optimum meridian profiles of mixed flow impellers for various specific speed are obtained. The relative efficiency or the cavitation performance of mixed flow impeller is better than that of radial or axial impeller. In this optimum method, the relative efficiency and the cavitation performance are calculated for all specified combinations of five shape factors. The number of five shape factors are expressed by Nβ1, NΔβ, Nkc, Nkd and Nν2. The number of calculations is expressed by Nβ1 × NΔβ × Nkc × Nkd × Nν2. The calculation time of five shape factors method is Nν2 times the calculation time of four shape factors method. Then, the best 1000 combinations of five shape factors are plotted on β1 - Δβ, kc - kd and kd - ν2 plane. The aspect of the best 1000 optimum conditions are found by these three figures. In initial step of impeller design, the result of the efficiency and cavitation performance of impeller calculated in optimum principal design parameters is important. The principal design parameters are hub-tip ratio, inlet-outlet diameter ratio, axial velocity ratio, solidity, inlet flow angle, turning angle and blade number. The author proposed the optimum meridian profile design method by diffusion factor for various condition of design parameters. There is a good correlation between the optimum hub-tip ratio and the specific speed considering cavitation performance. The optimum solidity is obtained for the specific speed considering efficiency and cavitation performance. It was found that the optimum meridian profile of high specific speed impeller with appropriate efficiency and cavitation performance had large inclination on hub and tip stream lines. The calculated data base is five dimensional using five shape factors β1, Δβ, kc, kd and ν2. Using the five shape factors in case of the best efficiency, the optimum meridian profile of improved radial flow impeller is able to be calculated. At first step of the case study, the best 1000 optimum meridian profiles and the best design parameter are selected using five dimensional optimum method. Next, the blade section shape of impeller is decided by the blade or cascade design method. Using impeller flow analysis, the cavitation performance decided by 3% head reduction is calculated. Finally, the relations between the many type of meridian profile and its impeller performance by flow analysis are obtained. These relations are very useful for new type of high specific speed impeller design. Consequently, radial impellers and axial impellers are improved by the consideration of the additional shape factor, that is, outlet hub-tip ratio ν2. This calculation shows that the improved radial high specific speed impeller considering outlet hub-tip ratio is used for high suction specific speed and high efficiency.


Author(s):  
Takuji Tsugawa

In the previous case study of optimum meridian profile of impeller and guidevane, the specific speed was the constant design specification. In this case study, the meridian profiles of optimum specific speed were studied. So, the specific speed is the variable design parameter. The impeller blade number and the guidevane blade number are also the variable design parameters. As the variable design parameters need to change gradually, the blade number is used as real number in the optimum process. In condition of the initial specific speed 1000, initial impeller blade number 2 and initial guidevane blade number 5, the meridian profile of which specific speed has the best efficiency and suction specific speed 1000 was obtained. In condition of the consideration of the only diffusion head loss, the efficiency isn’t affected by impeller outlet normal diameter and rotational speed. In this case study, the loss head of diffusion and the loss head of annular friction are considered. In the process of this optimum study, the 15 variable design parameters were changed constant or variable by two steps. As the result, the best meridian profile of specific speed 785, impeller real blade number 3.4 and guidevane real blade number 14.7 were obtained.


Author(s):  
Takuji Tsugawa

In the previous study, the optimum meridian profile of impeller and guidevane in two kinds of typical specific speed (very high and very low). The two kinds of optimum meridian profile were obtained by one initial meridian profile obtained by no restriction optimum process. As a result, the design parameters of almost all kinds of specific speed were obtained in above optimum process. In no restriction optimum process, the all of design parameters and specification are variable optimum parameters. In the optimum process, loss calculation consists of blade-to-blade diffusion loss and axial-symmetrical annular wall friction loss. In the calculation of axial-symmetrical annular wall friction loss, the wall friction factor is the function of Reynolds number because tip and hub annular walls were smooth surfaces. One of important merit of this optimum method is to obtain the best flow condition in inlet and outlet of impeller and guidevane without detailed impeller and guidevane shape design. This optimum method is executed on the assumption that the impeller and guidevane was designed to satisfy inlet and outlet flow conditions from hub to tip. In the present case study, the influence of the annular rough surface friction loss was studied in above two kinds of specific speed. In large Reynolds number, the relative roughness influences the wall friction factor but Reynolds number does not influence the wall friction factor. It is assumed that the annular surface is rough and Reynolds number is sufficiently high. Then, the annular wall friction factor is constant value decided by surface roughness. In the result, the optimum meridian profile was obtained in case of the rough annular surfaces. In the next case study, the impeller blade number of the previous optimum meridian profile is small. So, the restriction of impeller blade number was calculated to obtain the large blade number impeller. When one design parameter was changed gradually as restriction for goal value, the other design parameters were variable optimum design parameters or constant design parameters. In case study, the specific speed NS, mixed flow angle of impeller inlet N1 or impeller blade number Nimp were three design parameters as restriction. It is important that the only one parameter of three design parameters was changed gradually as restriction at the same time. In the optimum process, the restriction parameter was changed gradually as restriction. In the result, the optimum meridian profile of the large impeller blade number was obtained. It was difficult to obtain the initial design parameters of traditional impeller and guidevane using in this method up to now. In the future, the traditional impeller and guidevane will be able to modify by means of the design parameters restriction of this optimum method to agree with the primary design parameters of traditional impeller and guidevane.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Fei Tian ◽  
Shuo Li ◽  
...  

In order to study the effect of different numbers of impeller blades on the performance of mixed-flow pump “saddle zone”, the external characteristic test and numerical simulation of mixed-flow pumps with three different impeller blade numbers were carried out. Based on high-precision numerical prediction, the internal flow field and tip leakage flow field of mixed flow pump under design conditions and stall conditions are investigated. By studying the vorticity transport in the stall flow field, the specific location of the high loss area inside the mixed flow pump impeller with different numbers of blades is located. The research results show that the increase in the number of impeller blades improve the pump head and efficiency under design conditions. Compared to the 4-blade impeller, the head and efficiency of the 5-blade impeller are increased by 5.4% and 21.9% respectively. However, the increase in the number of blades also leads to the widening of the “saddle area” of the mixed-flow pump, which leads to the early occurrence of stall and increases the instability of the mixed-flow pump. As the mixed-flow pump enters the stall condition, the inlet of the mixed-flow pump has a spiral swirl structure near the end wall for different blade numbers, but the depth and range of the swirling flow are different due to the change in the number of blades. At the same time, the change in the number of blades also makes the flow angle at 75% span change significantly, but the flow angle at 95% span is not much different because the tip leakage flow recirculates at the leading edge. Through the analysis of the vorticity transport results in the impeller with different numbers of blades, it is found that the reasons for the increase in the values of the vorticity transport in the stall condition are mainly impacted by the swirl flow at the impeller inlet, the tip leakage flow at the leading edge and the increased unsteady flow structures.


2005 ◽  
Author(s):  
Takuji Tsugawa

In the previous paper, the optimum meridian profile of impeller was obtained for various specific speed by means of eight shape factors, that is, inlet relative flow angle β1, turning angle Δβ, axial velocity ratio kc = Cm2/Cm1, impeller diameter ratio kd = D1c/D2c, outlet hub-tip ratio ν2, tip solidity σtimp, mid span solidity σcimp and hub solidity σhimp. In this paper, the optimum meridian profile of multi-stage impeller with guidevane was obtained by means of twelve shape factors. The additional four shape factors are guidevane tip solidity σtgv, mid span solidity σcgv, hub solidity σhgv and coefficient of peripheral velocity at impeller inlet or guidevane outlet kCu1c. In the optimum method, the hydraulic efficiency and suction specific speed are calculated by diffusion factor. In the optimum condition, the best hydraulic efficiency or the best suction specific speed is obtained. In the cyclic flow condition of multi-stage impeller with guidevane, the absolute flow velocity of guidevane outlet is equal to that of impeller inlet, and the diameter of guidevane outlet is equal to that of impeller inlet. In this calculation, the diameter of impeller outlet is equal to that of guidevane inlet. The total calculation number of case study is very large, so the number of each parameter is about between four and seven. The best 1000 optimum meridian profiles and the best design parameter are selected for few kinds of specific speed using twelve dimensional optimum method. As the result of this calculation, the optimum meridian profile of multi-stage impeller and guidevane. The more detailed optimum multi-stage mixed flow impeller and guidevane profile is drawn. For, example, the 1000 specific speed is selected for case study of multi-stage mixed flow impeller. At first, the approximate optimum shape factors are present shape factors. And the optimum shape factors which have better efficiency are tried to find near the present shape factors. Then the study of shape factor changes is the objective of this paper.


Author(s):  
Teemu Turunen-Saaresti ◽  
Ahti Jaatinen

In this paper the effect of the tip clearance was studied with six different centrifugal compressors and data available in literature. The changes in the overall performance of the compressor stage were examined. The aim was to study the influence of the different design parameters to the tip clearance loss. It was evident by the previous studies that the sensitivity of the centrifugal compressor to the tip clearance loss varies with different designs. However, for the designer it is important to know the effect of the tip clearance loss in order to initially evaluate the quality of different designs. Analysis of the data demonstrated that no clear correlation between the sensitivity of the tip clearance loss and the specific speed, the diffusion ratio, the blade number and the ratio of blade heights exists.


Author(s):  
Hiromu Tsurusaki

This study was carried out in order to investigate the unstable flow through a mixed-flow-type vaneless diffuser system. The testing equipment consists of a vaneless diffuser, an inlet pipe, and a swirl flow generator. Pressure fluctuations of the flow through the diffuser were measured. In the experiment, the velocity ratio (axial velocity/peripheral velocity) at the diffuser inlet, diffuser width, inlet pipe length, hub diameter, and mixed flow angle of the diffuser were varied. The internal flow condition existing when the unstable flow occurred is discussed in terms of turbulent flow analysis. The main findings of this study are as follows. The unstable flow is excited when the aforementioned velocity ratio is lowered under a critical value. The source of the unstable flow is the mixed flow vaneless diffuser. The rotational speed of the cell and the intensity of pressure fluctuation are influenced remarkably by diffuser width. The inlet pipe acts as an attenuator for the unstable flow of the diffuser. A prediction equation for rotational speed of the cell is proposed. Prediction of back flow in the diffuser is useful for prediction of the onset of unstable flow. Unstable flow with a fast-speed mode was measured when the diffuser had a small hub and a small mixed flow angle. The fast-speed mode is believed to arise from instability in the inlet pipe system.


Volume 3 ◽  
2004 ◽  
Author(s):  
Takuji Tsugawa

In the previous paper, the optimum meridian profile of impeller was obtained for various specific speed by means of five shape factors. In this paper, the optimum meridian profile of impeller is obtained by means of eight shape factors. The basic five shape factors are inlet relative flow angle β1, turning angle Δβ, axial velocity ratio kc = Cm2/Cm1 impeller diameter ratio kd = D1c/D2c and outlet hub-tip ratio ν2 (β1 and Δβ are in mid span stream surface). The additional three parameters are three stream lines solidity (tip solidity σt, mid span solidity σc, and hub solidity σh). The blade length of impeller meridian profile is able to obtain by additional three parameters. The method of optimization is the calculation of hydraulic efficiency and suction specific speed in all combinations of eight shape parameters. The number of five shape factors are expressed by Nβ1, NΔβ, Nkc, Nkd, Nν2. The number of calculations is expressed by Nβ1 × NΔβ × Nkc × Nkd × Nν2. For example, Nβ1 = NΔβ = Nkc = Nkd = Nν2 = 40, the number of calculations is about 100000000. The calculation time is about 2 hours. The best parameters are selected in 100000000 cases. In case of eight shape factors, the number of calculation is Nβ1 × NΔβ × Nkc × Nkd × Nν2 × Nσt × Nσc × Nσh. Nβ1 = NΔβ = Nkc = Nkd = Nν2 = Nσt = Nσc = Nσh = 10, the number of calculation is 100000000. In this case, the calculation time of eight shape factors is as same as that of five shape factors. By means of this method, the more detailed optimum mixed flow impeller meridian shape is obtained. In case study, the best 1000 optimum meridian profiles and the best design parameter are selected for few kinds of specific speed using eight dimensional optimum method. In the previous paper, the mixed flow angle on tip meridian stream line isn’t able to be decided by this optimization using diffusion factor. But, in this paper, the mixed flow angle is able to be decided by the number of blade and optimum solidity. As the best solidity of three stream lines is obtained, the axial coordinates of impeller inlet and outlet are obtained. The more detailed optimum mixed flow impeller meridian shape is drawn.


Sign in / Sign up

Export Citation Format

Share Document