Experimental Study on Abrasion and Cavitation Resistance of Non-Metallic Coating Materials for Pump

Author(s):  
Hou-lin Liu ◽  
Man-hui Cao ◽  
Jie Chen ◽  
Yong Wang ◽  
Cheng-bin Wang

Abstract The protection of the flow-passage components of pump by using coating is an important method to increase wear resistance. This paper aims at examining abrasion resistance and cavitation erosion resistance of three typical non-metallic coating materials for pump including epoxy resin mortar, composite resin mortar and polyurethane. A wear-resistance test bench was built, using ultrasonic vibrating air eroding machine. Meanwhile, the main relative raw materials and formulas were introduced. The results indicate that: (1) The accumulated volume reduction of abrasion of composite resin mortar changes in an oblique waveform, and its abrasion resistance is better than that of epoxy resin mortar in a short period of time. The wear rate of epoxy resin mortar and composite resin mortar is higher than that of polyurethane. The total wear volume of epoxy resin mortar, composite resin mortar and polyurethane is decreased by 8.74%, 9.89% and 0.58% respectively within 30h of anti-wear test time; (2) The accumulated volume reduction of cavitation erosion of epoxy resin mortar is proportional to the time. In anti-cavitation erosion test time of 26 h, the erosion volume of composite resin mortar, polyurethane and epoxy resin mortar cavitation is reduced by 0.44%, 0.29% and 0.35%, respectively. It shows that cavitation erosion resistance of three coating materials is similar, while polyurethane materials have the best abrasion resistance.

2020 ◽  
Vol 20 (2) ◽  
pp. 26-38 ◽  
Author(s):  
M. Szala ◽  
M. Walczak ◽  
L. Łatka ◽  
K. Gancarczyk ◽  
D. Özkan

AbstractThe investigation into wear resistance is an up-to-date problem from the point of view of both scientific and engineering practice. In this study, HVOF coatings such as MCrAlY (CoNiCrAlY and NiCoCrAlY) and NiCrMo were deposited on AISI 310 (X15CrNi25-20) stainless steel substrates. The microstructural properties and surface morphology of the as-sprayed coatings were examined. Cavitation erosion tests were conducted using the vibratory method in accordance with the ASTM G32 standard. Sliding wear was examined with the use of a ball-on-disc tribometer, and friction coefficients were measured. The sliding and cavitation wear mechanisms were identified with the SEM-EDS method. In comparison to the NiCrMo coating, the MCrAlY coatings have lower wear resistance. The cavitation erosion resistance of the as-sprayed M(Co,Ni)CrAlY coatings is almost two times lower than that of the as-sprayed NiCrMoFeCo deposit. Moreover, the sliding wear resistance increases with increasing the nickel content as follows: CoNiCrAlY < NiCoCrAlY < NiCrMoFeCo. The mean friction coefficient of CoNiCrAlY coating equals of 0.873, which almost 50% exceed those reported for coating NiCrMoFeCo of 0.573. The as-sprayed NiCrMoFeCo coating presents superior sliding wear and cavitation erosion resistance to the as-sprayed MCrAlY (CoNiCrAlY and NiCoCrAlY) coatings.


2006 ◽  
Vol 15-17 ◽  
pp. 199-204 ◽  
Author(s):  
Ping Zhang ◽  
Jing Hua Jiang ◽  
Ai Bin Ma ◽  
Ze Hua Wang ◽  
Yu Ping Wu ◽  
...  

With the aim to obtain the high cavitation-erosion-resistance coating for the surface safeguard of fluid machinery, two kinds of hard coatings (WC-Cr-Co and Cr3C2-NiCr) were prepared on 1Cr18Ni9Ti substrate by high velocity oxy-fuel spraying (HVOF), which microstructure and performance were investigated respectively by optical microscope, X-ray diffraction, Vickers hardness, scanning electron microscope (SEM), and vibratory cavitation apparatus. The results indicated that these two coatings had the higher hardness and the finer structure than ZG06Cr13Ni5Mo, which is used actual in water conservancy. The results of cavitation erosion continued for 39 hours presented that the mass loss of WC-Cr-Co and Cr3C2 -NiCr coatings increased ceaselessly with time, and the cavitation erosion speeds varied with time. Compared with ZG06Cr13Ni5Mo, their cavitation erosion resistance performances were better due to their higher hardness and finer structure, and WC-Cr-Co coating was much better than Cr3C2-NiCr coating. Obviously, the higher hardness and finer structure could strengthen the cavitation erosion resistance of coating materials.


Author(s):  
Juliana Barbarioli ◽  
André Tschiptschin ◽  
Cherlio Scandian ◽  
Manuelle Curbani Romero

2021 ◽  
Vol 409 ◽  
pp. 126838
Author(s):  
Xinlong Wei ◽  
Wuyan Zhu ◽  
Aolin Ban ◽  
Dejia Zhu ◽  
Chao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document