Numerical Simulation of Proppant Transportation in Hydraulic Fracture Based on DDPM-KTGF Model

Author(s):  
Yan Zhang ◽  
Xiaobing Lu ◽  
Xuhui Zhang ◽  
Peng Li

Abstract Hydraulic fracturing is an efficient way to improve the conductivity of the tight oil or gas reservoirs. Proppant transportation in hydraulic fractures need to be investigated because the proppant distribution directly affects the oil or gas production. In this paper, the dense discrete particle model (DDPM) combined with the kinetic theory of granular flow (KTGF) are used to investigate the proppant transportation in a single fracture. In this model, the effects of proppant volume fraction, proppant-water interaction, proppant-proppant collision, and proppant size distribution are considered. The proppant-proppant collision is derived from the proppant stress tensor. This model is applicable from dilute to dense particulate flows. The simulated results are similar to the experimental data from other researchers. In further study, the two-phase flow in the cross fractures will be considered for engineering application.

2013 ◽  
Vol 275-277 ◽  
pp. 456-461
Author(s):  
Lei Zhang ◽  
Lai Bing Zhang ◽  
Bin Quan Jiang ◽  
Huan Liu

The accurate prediction of the dynamic reserves of gas reservoirs is the important research content of the development of dynamic analysis of gas reservoirs. It is of great significance to the stable and safe production and the formulation of scientific and rational development programs of gas reservoirs. The production methods of dynamic reserves of gas reservoirs mainly include material balance method, unit pressure drop of gas production method and elastic two-phase method. To clarify the characteristics of these methods better, in this paper, we took two typeⅠwells of a constant volume gas reservoir as an example, the dynamic reserves of single well controlled were respectively calculated, and the results show that the order of the calculated volume of the dynamic reserves by using different methods is material balance method> unit pressure drop of gas production method >elastic two-phase method. Because the material balance method is a static method, unit pressure drop of gas production method and elastic two-phase method are dynamic methods, therefore, for typeⅠwells of constant volume gas reservoirs, when the gas wells reached the quasi-steady state, the elastic two-phase method is used to calculate the dynamic reserves, and when the gas wells didn’t reach the quasi-steady state, unit pressure drop of gas production method is used to calculate the dynamic reserves. The conclusion has some certain theoretical value for the prediction of dynamic reserves for constant volume gas reservoirs.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 664 ◽  
Author(s):  
Lei Li ◽  
Guanglong Sheng ◽  
Yuliang Su

Hydraulic fracturing is a necessary method to develop shale gas reservoirs effectively and economically. However, the flow behavior in multi-porosity fractured reservoirs is difficult to characterize by conventional methods. In this paper, combined with apparent porosity/permeability model of organic matter, inorganic matter and induced fractures, considering the water film in unstimulated reservoir volume (USRV) region water and bulk water in effectively stimulated reservoir volume (ESRV) region, a multi-media water-gas two-phase flow model was established. The finite difference is used to solve the model and the water-gas two-phase flow behavior of multi-fractured horizontal wells is obtained. Mass transfer between different-scale media, the effects of pore pressure on reservoirs and fluid properties at different production stages were considered in this model. The influence of the dynamic reservoir physical parameters on flow behavior and gas production in multi-fractured horizontal wells is studied. The results show that the properties of the total organic content (TOC) and the inherent porosity of the organic matter affect gas production after 40 days. With the gradual increase of production time, the gas production rate decreases rapidly compared with the water production rate, and the gas saturation in the inorganic matter of the ESRV region gradually decreases. The ignorance of stress sensitivity would cause the gas production increase, and the ignorance of organic matter shrinkage decrease the gas production gradually. The water film mainly affects gas production after 100 days, while the bulk water has a greater impact on gas production throughout the whole period. The research provides a new method to accurately describe the two-phase fluid flow behavior in different scale media of fractured shale gas reservoirs.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4912
Author(s):  
Yan Zhang ◽  
Xiaobing Lu ◽  
Xuhui Zhang ◽  
Peng Li

The proppant transportation is a typical two-phase flow process in a complex cross fracture network during hydraulic fracturing. In this paper, the proppant transportation in cross fractures is investigated by the computational fluid dynamics (CFD) method. The Euler–Euler two-phase flow model and the kinetic theory of granular flow (KTGF) are adopted. The dimensionless controlling parameters are derived by dimensional analysis. The equilibrium proppant height (EPH) and the ratio of the proppant mass (RPM) in the secondary fracture to that in the whole cross fracture network are used to describe the movement and settlement of proppants in the cross fractures. The main features of the proppant transportation in the cross fractures are given, and several relative suggestions are presented for engineering application in the field. The main controlling dimensionless parameters for relative EPH are the proppant Reynolds number and the inlet proppant volume fraction. The dominating dimensionless parameters for RPM are the relative width of the primary and the secondary fracture. Transportation of the proppants with a certain particle size grading into the cross fractures may be a good way for supporting the hydraulic fractures.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1634 ◽  
Author(s):  
Juhyun Kim ◽  
Youngjin Seo ◽  
Jihoon Wang ◽  
Youngsoo Lee

Most shale gas reservoirs have extremely low permeability. Predicting their fluid transport characteristics is extremely difficult due to complex flow mechanisms between hydraulic fractures and the adjacent rock matrix. Recently, studies adopting the dynamic modeling approach have been proposed to investigate the shape of the flow regime between induced and natural fractures. In this study, a production history matching was performed on a shale gas reservoir in Canada’s Horn River basin. Hypocenters and densities of the microseismic signals were used to identify the hydraulic fracture distributions and the stimulated reservoir volume. In addition, the fracture width decreased because of fluid pressure reduction during production, which was integrated with the dynamic permeability change of the hydraulic fractures. We also incorporated the geometric change of hydraulic fractures to the 3D reservoir simulation model and established a new shale gas modeling procedure. Results demonstrate that the accuracy of the predictions for shale gas flow improved. We believe that this technique will enrich the community’s understanding of fluid flows in shale gas reservoirs.


2012 ◽  
Author(s):  
Steven L. Brown ◽  
Brian Y. Lattimer

An experimental 2-D fluidized bed was developed to study gas-solid hydrodynamics. The effects of multiple jet systems were examined using Particle Image Velocimetry (PIV) combined with Digital Image Analysis (DIA). Flow regimes were classified through pressure drop spectral analysis. The combination of these non-intrusive techniques allowed for the development of a solid volume fraction correlation. The experimental results show new void fraction regimes of multiple interacting jets. Jet systems combined to promote gas solid mixing and decrease particle dead zones within the bed. It was determined that the validation of multiple jet Discrete Particle Model simulations cannot be exclusively confirmed from single jet studies.


SPE Journal ◽  
2014 ◽  
Vol 19 (05) ◽  
pp. 845-857 ◽  
Author(s):  
Yu-Shu Wu ◽  
Jianfang Li ◽  
Didier-Yu Ding ◽  
Cong Wang ◽  
Yuan Di

Summary Unconventional gas resources from tight-sand and shale gas reservoirs have received great attention in the past decade around the world because of their large reserves and technical advances in developing these resources. As a result of improved horizontal-drilling and hydraulic-fracturing technologies, progress is being made toward commercial gas production from such reservoirs, as demonstrated in the US. However, understandings and technologies needed for the effective development of unconventional reservoirs are far behind the industry needs (e.g., gas-recovery rates from those unconventional resources remain very low). There are some efforts in the literature on how to model gas flow in shale gas reservoirs by use of various approaches—from modified commercial simulators to simplified analytical solutions—leading to limited success. Compared with conventional reservoirs, gas flow in ultralow-permeability unconventional reservoirs is subject to more nonlinear, coupled processes, including nonlinear adsorption/desorption, non-Darcy flow (at both high flow rate and low flow rate), strong rock/fluid interaction, and rock deformation within nanopores or microfractures, coexisting with complex flow geometry and multiscaled heterogeneity. Therefore, quantifying flow in unconventional gas reservoirs has been a significant challenge, and the traditional representative-elementary-volume- (REV) based Darcy's law, for example, may not be generally applicable. In this paper, we discuss a generalized mathematical framework model and numerical approach for unconventional-gas-reservoir simulation. We present a unified framework model able to incorporate known mechanisms and processes for two-phase gas flow and transport in shale gas or tight gas formations. The model and numerical scheme are based on generalized flow models with unstructured grids. We discuss the numerical implementation of the mathematical model and show results of our model-verification effort. Specifically, we discuss a multidomain, multicontinuum concept for handling multiscaled heterogeneity and fractures [i.e., the use of hybrid modeling approaches to describe different types and scales of fractures or heterogeneous pores—from the explicit modeling of hydraulic fractures and the fracture network in stimulated reservoir volume (SRV) to distributed natural fractures, microfractures, and tight matrix]. We demonstrate model application to quantify hydraulic fractures and transient flow behavior in shale gas reservoirs.


Author(s):  
Thomas Webb ◽  
Carol Eastwick ◽  
Herve´ Morvan

This paper presents results for modelling two-phase flows between a rotating spiral bevel gear and a static shroud. The context behind this is a desire to use Computational Fluid Dynamics (CFD) as a tool for reducing heat-to-oil within gas turbine bearing chambers and gearboxes. This paper uses a solid model and mesh technique first presented in [1], and extends it to include visualisation techniques for two-phase flows. A single tooth model of a spiral bevel gear is used with a Discrete Particle Model (DPM) approach to simulate the presence of oil within the domain using FLUENT 12.0.16. Two different injections are used; the inlet to the shroud simulates the ingestion of a suspended mist from the chamber in which a gear is sitting, and the outer diameter of the gear simulates shedding of oil from the rotating gear onto the surface of the shroud. Variation of the injection velocities allows parameterisation of the destination trajectories and locations of the particles. Analysis of the results of particles injected at the inlet to the shrouded gear show that larger droplets are likely to hit the underside of the nose to the shroud, whereas particles of around 3.5 microns diameter or smaller, will travel further into the domain and hit the gear, or pass entirely through the shrouded region. Droplets injected from the outer diameter of the gear show little sensitivity to the initial velocity and strike the surface of the shroud radially outwards from their injection location. This strong concentration of particles hitting the shroud will provide a useful avenue for further two-phase modelling using a thin-film created with the discrete particle model.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wei-Yang Xie ◽  
Xiao-Ping Li ◽  
Lie-Hui Zhang ◽  
Xiao-Hua Tan ◽  
Jun-Chao Wang ◽  
...  

After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, and orthogonal transformation. According to the model’s solution, the bilogarithmic type curves of the two-phase model are illustrated, and the production decline performance under the effects of hydraulic fractures and shale gas reservoir properties are discussed. The result obtained in this paper has important significance to understand pressure response characteristics and production decline law of two-phase flow in shale gas reservoirs. Moreover, it provides the theoretical basis for exploiting this reservoir efficiently.


2011 ◽  
Vol 51 (1) ◽  
pp. 519
Author(s):  
Jakov Ostojic ◽  
Reza Rezaee ◽  
Hassan Bahrami

The increasing global demand for energy along with the reduction in conventional gas reserves has lead to the increasing demand and exploration of unconventional gas sources. Hydraulically-fractured tight gas reservoirs are one of the most common unconventional sources being produced today and look to be a regular source of gas in the future. Hydraulic fracture orientation and spacing are important factors in effective field drainage and gas recovery. This paper presents a 3D single well hydraulically fractured tight gas model created using commercial simulation software, which will be used to simulate gas production and synthetically generate welltest data. The hydraulic fractures will be simulated with varying sizes and different numbers of fractures intersecting the wellbore. The focus of the simulation runs will be on the effect of hydraulic fracture size and spacing on well productivity performance. The results obtained from the welltest simulations will be plotted and used to understand the impact on reservoir response under the different hydraulic fracturing scenarios. The outputs of the models can also be used to relate welltest response to the efficiency of hydraulic fractures and, therefore, productivity performance.


Sign in / Sign up

Export Citation Format

Share Document