Experimental Study on Characteristics of Methane-Coal Dust Mixture Explosion and Its Mitigation by Ultra-Fine Water Mist

Author(s):  
Hongli Xu ◽  
Xishi Wang ◽  
Rui Gu ◽  
Heping Zhang

This paper presents the results of experimental investigation on characteristics of methane-coal dust mixture explosion and its mitigation by ultra-fine water mist. Four E12-1-K type fast response thermocouples, two PCB piezotronic pressure transducers were used to obtain the temperature and pressure history of methane-coal dust mixture explosion and its mitigation by ultra-fine water mist, while a GigaView High-speed camera was used to visualize the processes. Different methane concentrations, coal dust concentrations, diameters of coal particles and volumes of ultra-fine water mist were considered for their effects on methane-coal dust mixture explosion. The temperature of explosion flame, the maximum explosion overpressure, the maximum rate of overpressure rise, and the critical volume flux of ultra-fine water mist were experimentally determined. The results show that the characteristics of the methane-coal dust mixture explosion and the mitigating efficiency by ultra-fine water mist are influenced by the methane concentration, the coal dust concentration, the coal dust diameter and the applied volume flux of ultra-fine water mist. For example, both the maximum explosion overpressure and rate of overpressure rise increased with increasing of coal dust concentrations and methane concentrations. All of the test cases indicate that ultra-fine water mist can mitigate the mixture explosion and suppress the flame propagation efficiently from the images record by high speed video camera.

Author(s):  
Hongli Xu ◽  
Xishi Wang ◽  
Rui Gu ◽  
Heping Zhang

This paper presents the results of an experimental investigation on the characteristics of methane–coal-dust mixture explosion and its mitigation by ultra-fine water mist. Four E12-1-K-type fast response thermocouples, two printed circuit board (PCB) piezotronic pressure transducers were used to obtain the temperature and pressure history, while a GigaView high-speed camera was used to visualize the processes. Different methane concentrations, coal-dust concentrations, diameters of coal particles, and volumes of ultra-fine water mist were considered to investigate their effects on methane–coal-dust mixture explosion. The temperature of explosion flame, the maximum explosion overpressure, the maximum rate of overpressure rise, and the critical volume flux of ultra-fine water mist were experimentally determined. The results show that the characteristics of the methane–coal-dust mixture explosion and the mitigating effectiveness by ultra-fine water mist are influenced by the methane concentration, the coal-dust concentration, the coal-dust diameter and the applied volume flux of ultra-fine water mist. For example, both the maximum explosion overpressure and rate of overpressure rise increased with increasing of coal-dust concentrations and methane concentrations. All of the test cases indicate that ultra-fine water mist can mitigate the mixture explosion and suppress the flame propagation efficiently from the images recorded by the high-speed video camera.


Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the Single Stage Centrifugal Compressor (SSCC) facility at Purdue University and include speed transients from sub-idle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


Author(s):  
Meera Day Towler ◽  
Tim Allison ◽  
Paul Krueger ◽  
Karl Wygant

This investigation studies fast-response pressure measurements as an indicator of the onset of surge in a single-stage centrifugal compressor. The objective is to determine an online monitoring approach for surge control that does not rely on surge margin relative to maps from predictions or factory testing. Fast-response pressure transducers are installed in the suction piping, inducer, diffuser, and discharge piping. A speed line is mapped, and high-speed pressure data are collected across the compressor map. The compressor is driven into surge several times to collect pressure data between during surge and between surge events. Following testing, these data are post-processed via filtration and statistical analyses. It is determined that, when taken together, the mean and range of the standard deviation of the time signal for multiple time steps can be used to determine whether the compressor’s operating point is approaching surge for the conditions tested.


Author(s):  
C. Samuel Martin

Careful experiments have been conducted for the purpose of investigating the phenomenon of condensation-induced waterhammer in an ammonia refrigeration system. To initiate a waterhammer event warm ammonia gas was introduced over static subcooled ammonia liquid placed in a horizontal 146.3 mm diameter carbon steel pipe 6.0 m in length. By means of fast response piezoelectric pressure transducers and a high speed data acquisition system rapid dynamic pressures were recorded whenever a shock event occurred. The occurrence of condensation-induced waterhammer depended upon three major variables; namely, (1) initial liquid depth, (2) liquid temperature, and (3) mass flow rate of warm gas. For given liquid depth and temperature, once the warm gas threshold conditions were exceeded shocks occurred with greater magnitude as the mass flow rate of gas input was increased. With adequate subcooling condensation-induced waterhammer occurred for initial liquid depths ranging from 25% to 95% of internal pipe diameter. The threshold mass flow rate of warm gas necessary to initiate waterhammer was greater as the initial liquid was lowered.


2002 ◽  
Author(s):  
P. A. Hagen ◽  
W. Chon ◽  
R. S. Amano

The objective of this study is to investigate the flow behavior within a triple-blade lawnmower deck. The test section was constructed for velocity measurement with an open bottom and side-discharge. Velocity measurements were collected at several different tangential and axial sections inside the deck. The flow behaviors are observed using Laser Doppler Velocimetry (LDV) and a high-speed video camera capturing 2000 frames per second. Several different visualization techniques have been attempted: particle feeding, water vapor injection, tuft method, and others. To further enhance the experimental accuracy, fresh sod was fed into the system simulating normal cutting conditions. Along with the extensive velocity analysis, strain and static pressure were also examined at various surface locations along the blade using linear strain gages, piezoresistive pressure transducers, and Finite Element Analysis (FEA) methods. Validation of the above analyses was performed using Computational Fluid Dynamics (CFD) investigation. It has been observed that the deck and blade configurations share equal significance in the resultant flow profiles.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Jan Lepicovsky ◽  
David Simurda

The aim of this paper is to review, summarize, and record long-term experience with development and application of aerodynamic probes with built-in miniature pressure transducers for unsteady pressure measurement and industrial research in turbomachine components. The focus of the first half of the paper is on the work performed at VZLU Prague, Czech Republic (Secs. 3–8). The latest development in unsteady pressure measurement techniques and data reduction methodology suitable for future research in highly loaded, high-speed turbine engine components performed at NASA GRC Cleveland, OH, is reported in Secs. 8–15 of this paper. Excellent reviews of similar activities at ETH Zürich, Switzerland by Kupferschmied, et al. (2000, “Time-Resolved Flow Measurements With Fast-Response Aerodynamic Probes in Turbomachines,” Meas. Sci. Technol., 11(7), pp. 1036–1054) and at VKI Rhode-Sain-Genèse, Belgium by Sieverding, et al. (2000, “Measurement Techniques for Unsteady Flows in Turbomachines,” Exp. Fluids, 28(4), pp. 285–321) were already reported and are acknowledged here. A short list of reported accomplishments achieved by other researchers at various laboratories is also reported for completeness. The authors apologize to those whose contributions are not reported here. It is just an unfortunate oversight, not an intentional omission.


Author(s):  
Dan Jiang ◽  
Cong Ren ◽  
Qing Guo

In this study, pressure transients are triggered by a steel ball, which is released from an upstream reservoir to hit a valve seat and shut off water flow in a horizontal straight copper pipeline. The pressure pulsations, cavitation and gas bubbles growth and collapse in the low pressure water-hydraulic pipeline are recorded by two pressure transducers and a high speed video camera, respectively. In addition, the influences of initial volume of gas bubbles in water and instant leakage in valve are investigated. The experimental results indicate that increasing initial gas bubble volume in water and the instant leakage of the valve will help to reduce magnitudes and numbers of pressure peaks during pressure transients. Then methods to reduce pressure pulsations in pipelines are put forward.


Author(s):  
J. F. Escuret ◽  
V. Garnier

This paper presents unsteady measurements taken in a high-speed four-stage aero-engine compressor prior to the onset of aerodynamic flow instabilities. In this experiment, forty fast-response pressure transducers have been located at various axial and circumferential positions throughout the machine in order to give a very detailed picture of stall inception. At all the compressor speeds investigated, the stall pattern observed is initiated by a very short length-scale finite-amplitude disturbance which propagates at a fast rate around the annulus. This initial stall cell leads to a large-amplitude system instability in less than five rotor revolutions. Varying the IGV setting angle is found to have a strong influence on the axial location of the first disturbance detected. In particular, transferring the aerodynamic loading from front to downstream stages moves the first disturbance detected from the first to the last stage of the compressor. Other repeatable features of the stall inception pattern in this compressor have been identified using a simple analysis technique particularly appropriate to the study of short length-scale disturbances. It is found that the origins of instabilities are tied to particular tangential positions in both the stationary and rotating frames of reference. These measurements lead to the conclusion that the stall inception process in high-speed multi-stage compressors can be characterised by some very local and organised flow phenomena. Moreover, there is no evidence of pre-stall waves in this compressor.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the single stage centrifugal compressor (SSCC) facility at Purdue University and include speed transients from subidle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge (LE) and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one-third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


1996 ◽  
Vol 118 (4) ◽  
pp. 690-696 ◽  
Author(s):  
J. F. Escuret ◽  
V. Garnier

This paper presents unsteady measurements taken in a high-speed four-stage aeroengine compressor prior to the onset of aerodynamic flow instabilities. In this experiment, 40 fast-response pressure transducers have been located at various axial and circumferential positions throughout the machine in order to give a very detailed picture of stall inception. At all the compressor speeds investigated, the stall pattern observed is initiated by a very short length-scale finite-amplitude disturbance, which propagates at a fast rate around the annulus. This initial stall cell leads to a large-amplitude system instability in less than five rotor revolutions. Varying the IGV setting angle is found to have a strong influence on the axial location of the first disturbance detected. In particular, transferring the aerodynamic loading from front to downstream stages moves the first disturbance detected from the first to the last stage of the compressor. Other repeatable features of the stall inception pattern in this compressor have been identified using a simple analysis technique particularly appropriate to the study of short length-scale disturbances. It is found that the origins of instabilities are tied to particular tangential positions in both the stationary and rotating frames of reference. These measurements lead to the conclusion that the stall inception process in high-speed multistage compressors can be characterized by some very local and organized flow phenomena. Moreover, there is no evidence of prestall waves in this compressor.


Sign in / Sign up

Export Citation Format

Share Document