Condensation-Induced Water Hammer in Horizontal Refrigerant Pipe With Warm Gas Entry

Author(s):  
C. Samuel Martin

Careful experiments have been conducted for the purpose of investigating the phenomenon of condensation-induced waterhammer in an ammonia refrigeration system. To initiate a waterhammer event warm ammonia gas was introduced over static subcooled ammonia liquid placed in a horizontal 146.3 mm diameter carbon steel pipe 6.0 m in length. By means of fast response piezoelectric pressure transducers and a high speed data acquisition system rapid dynamic pressures were recorded whenever a shock event occurred. The occurrence of condensation-induced waterhammer depended upon three major variables; namely, (1) initial liquid depth, (2) liquid temperature, and (3) mass flow rate of warm gas. For given liquid depth and temperature, once the warm gas threshold conditions were exceeded shocks occurred with greater magnitude as the mass flow rate of gas input was increased. With adequate subcooling condensation-induced waterhammer occurred for initial liquid depths ranging from 25% to 95% of internal pipe diameter. The threshold mass flow rate of warm gas necessary to initiate waterhammer was greater as the initial liquid was lowered.

Author(s):  
C. Samuel Martin

The phenomenon of condensation-induced waterhammer in an ammonia refrigeration system was investigated experimentally. Waterhammer was generated by introducing warm ammonia gas over static subcooled ammonia liquid placed in a horizontal 146.3 mm diameter carbon steel pipe approximately 6.0 m long. By means of fast response piezoelectric pressure transducers and a high speed data acquisition system rapid dynamic pressures were recorded whenever a condensation-induced event occurred. Employing top-mounted diaphragm pressure transducers to sense gas pressure the speed of liquid slugs propagating along the pipe was determined. The occurrence of condensation-induced waterhammer depended upon three major variables; namely, (1) initial liquid depth, (2) liquid temperature, and (3) mass flow rate of warm gas. For given liquid depth and temperature, once the warm gas threshold conditions were exceeded, shocks occurred with greater magnitude as the mass flow rate of warm gas input was increased. With adequate subcooling condensation-induced waterhammer occurred for initial liquid depths ranging from 25% to 95% of internal pipe diameter. The threshold mass flow rate of warm gas necessary to initiate waterhammer was greater as the initial liquid depth was lowered. For numerous tests with sufficient gas mass flow rate a condensation-induced shock occurred at the end cap of the test pipe, generating an acoustic (pressure) wave that propagated at a modified speed of sound toward the gas-liquid interface at the back of the slug. Peak shock pressures could be correlated with the gas mass flow rate for various initial liquid depth and suction pressures and temperatures. As the initial liquid temperature and pressure were increased the hydraulic shocks became lower because of smaller subcooling.


Author(s):  
Sibel Tas ◽  
Sertac Cadirci ◽  
Hasan Gunes ◽  
Kemal Sarioglu ◽  
Husnu Kerpicci

The aim of this experimental study is to investigate the mass flow rate of the lubricating oil in a hermetic reciprocating compressor. Essential parameters affecting the performance of the lubrication are the rotational speed of the crankshaft, the viscosity of the oil, the operating temperature and the submersion depth of the crankshaft. An experimental setup was built as to measure the oil mass flow rate with respect to the oil temperature variation during different operating conditions. The influence of the governing parameters such as the rotational speed, temperature (viscosity) and the submersion depth on the mass flow rate from crankshaft outlet are studied in detail. In addition, the oil flow visualization from the upper hole of the crankshaft is performed using a high-speed camera in order to observe the effectiveness of the lubrication of the various parts of the compressor. This study reveals that with increasing rotational speed, the submersion depth of the crankshaft and with decreasing viscosity of the lubricant, the mass flow rate from the crankshaft increases.


2016 ◽  
Vol 797 ◽  
pp. 604-629 ◽  
Author(s):  
S. Im ◽  
D. Baccarella ◽  
B. McGann ◽  
Q. Liu ◽  
L. Wermer ◽  
...  

The unstart phenomena in a model scramjet with a free stream Mach number of 4.5 were investigated at an arc-heated hypersonic wind tunnel. High-speed schlieren imaging and high resonance frequency pressure measurements were used to capture the flow features during the unstart process. Three unstart conditions were tested: (i) a low-enthalpy free stream with mass loading, (ii) a high-enthalpy free stream with mass loading and (iii) a high-enthalpy free stream with mass loading and heat release. It was revealed that the unstart threshold and the time from the onset to the completion of unstart depended strongly on the mass loading rate and the heat exchange. The negative heat addition (cooling) significantly increased the threshold of mass flow rate triggering unstart. The decrement of the mass flow rate threshold for unstart was observed in the presence of heat release by combustion. The observed transient and quasi-steady behaviours of the unstart shockwave system and the jet motion were similar in all of the test conditions. On the other hand, at the lip of inlet model, the unstart shockwave under the cold free stream condition exhibited a relatively steady behaviour while severe oscillatory flow motions of the jet and the unstart shockwave were observed in the combustion-driven unstart process. The different unstarted flow behaviours between the three flow conditions were explained using a simplified one-dimensional flow choking analysis and use of the Korkegi criterion.


Author(s):  
Alex Yeung ◽  
Nagabhushana Rao Vadlamani ◽  
Tom Hynes ◽  
Sumit Sarvankar

This paper studies the computational modelling of the flow separation over the engine nacelle lips under the off-design condition of significant crosswind. A numerical framework is set up to reproduce the general flow characteristics under crosswinds with increasing engine mass flow rate, which include: low-speed separation, attached flow and high speed shock-induced separation. A quasi-3D (Q3D) duct extraction method from the full 3D (F3D) simulations has been developed. Results obtained from the Q3D simulations are shown to largely reproduce the trends observed (isentropic Mach number variations and high-speed separation behaviour) in the 3D intake, substantially reducing the simulation time by a factor of 50. The agreement between the F3D and Q3D simulations is encouraging when the flow either fully attached or with modest levels of separation but degrades when the flow fully detaches. Results are shown to deviate beyond this limit since the captured streamtube shape (and hence the corresponding Q3D duct shape) changes with the mass flow rate. Interestingly, the drooped intake investigated in the current study is prone to earlier separation under crosswinds when compared to an axisymmetric intake. Implications of these results on the industrial nacelle lip design are also discussed.


Author(s):  
N. A. Ahmed ◽  
R. L. Elder

The paper describes experimental results obtained using laser velocimetry in a small high speed centrifugal impeller. The formation of wakes and the effect of varying speed and mass flow rate on the flow within the impeller passages are presented. In addition, an indication of the three dimensional nature of the impeller flow is discussed (the three dimensional results being obtained using a novel Doppler anemometer).


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 274
Author(s):  
Valeriia G. Melnikova ◽  
Andrey S. Epikhin ◽  
Matvey V. Kraposhin

This paper presents the Eulerian–Lagrangian approach for numerical modeling of high-speed gas-droplet flows and aeroacoustics. The proposed hybrid approach is implemented using the OpenFOAM library and two different methods. The first method is based on a hybrid convective terms approximation method employing a Kurganov–Tadmor and PIMPLE scheme. The second method employs the regularized or quasi-gas dynamic equations. The Lagrangian part of the flow description uses the OpenFOAM cloud model. Within this model, the injected droplets are simulated as packages (parcels) of particles with constant mass and diameter within each parcel. According to this model, parcels moving in the gas flow could undergo deceleration, heating, evaporation, and breakup due to hydrodynamic instabilities. The far-field acoustic noise is predicted using Ffowcs Williams and Hawking’s analogy. The Lagrangian model is verified using the cases with droplet evaporation and motion. Numerical investigation of water microjet injection into the hot ideally expanded jet allowed studying acoustic properties and flow structures, which emerged due to the interaction of gas and liquid. Simulation results showed that water injection with a mass flow rate equal to 13% of the gas jet mass flow rate reduced the noise by approximately 2 dB. This result was in good coincidence with the experimental observations, where maximum noise reduction was about 1.6 dB.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2959
Author(s):  
Yunlei Xiao ◽  
Zhixun Xia ◽  
Liya Huang ◽  
Likun Ma ◽  
Dali Yang

Microscopic high-speed imaging is used to experimentally measure the velocity and size of droplets of gelled RP-1 based fuels with a solid particle additive. The gels are atomized using an air atomizing nozzle. The droplet diameter and velocity at a fixed position 20 cm from the nozzle on the centerline of the spray are measured at air mass flow rates of 1.5, 3 and 5 g/s. A parametric study is conducted to study the effect of gas mass flow rate, boron particle content, and species of the solid particle on the droplet characteristics. The results indicate that the droplet size decreases with the increasing of gas mass flow rate and boron particle content. Gel fuels with an aluminum particle are observed to produce smaller droplets at a low gas mass flow rate than that with a boron particle. The implication of these observations is that the atomization processes for gelled fuels with an additive of solid particles is controlled by the velocity difference between the gas and the droplets.


Author(s):  
K. M. Saad Eldin

Abstract Recent work has shown that variable impeller geometry of the centrifugal compression system can be actively stabilized against the instability known as surge, thereby realizing a significant gain in system mass flow rate. In this context, the paper presents an experimental study about the influence of the impeller blade configuration on the extension of the stabilized characteristic margin beyond the natural surge line and enlarge the usable compressor operating region. This method is estimated from the two major control methods which: surge avoidance control and surge suppression control. The impeller of tandem type with zero overlap is found to be a good sample to satisfy the above concept. The impeller is working as full bladed at stable regime, but it could be transferred into tandem bladed when the mass flow rate decreases below a certain minimum value, just before rotating stall occurs. The operating point moves downwards to another characteristic curve belonging to the new configuration, which has a surge margin less than the original one by 56 percent, at high speed. Herein the effect of tandem shift angle on extending the stabilized range is studied experimentally and a control criterion is suggested. The pressure ratio at the new characteristic curve is decreased by about 3 percent and maximum efficiency is decreased also by about 28 percent.


Author(s):  
Shuonan Xu ◽  
Zhe Wang ◽  
Robert Prucka ◽  
Zoran Filipi ◽  
Michael Prucka ◽  
...  

Stringent emission regulations require spark ignited (SI) engines to operate at stoichiometry to enable the use of a three way catalyst (TWC). Thus, accurate prediction of the intake charge mass flow rate is paramount. Current speed-density air mass-flow prediction techniques require extensive calibration for predicting volumetric efficiency, while mass air flow (MAF) meter based approaches suffer from a loss of accuracy during transients. This work aims to provide an alternative, i.e. a model based air charge estimation algorithm that can reduce calibration effort and provide a universal solution across engine platforms. An additional objective is to minimize the number of required sensors and associated cost. The foundation is established with a 0-D physics-based air charge model, where air flow through intake and exhaust valves is modeled on a crank-angle basis, without the need to measure in-cylinder pressure. The proposed algorithm solves differential equations for cylinder pressure and mass flow rate in/out of the cylinder to simultaneously obtain instantaneous pressure and mass-flow estimations, hence eliminating the need to install cylinder pressure transducers. An additional benefit is the robustness of the new model, due to its ability to self-compensate for an error in the intake runner pressure or initial estimation of the cylinder pressure. The model has been validated with GT-Power simulations and steady-state engine tests with multiple actuator sweeps. Transient tests and real-time implementations were performed as well.


Sign in / Sign up

Export Citation Format

Share Document