Experiment and Computer Modelling of the Filling Flows in Pressure Die Casting

Author(s):  
J. Hu ◽  
S. Ramlingam ◽  
G. Meyerson ◽  
E. R. G. Eckert ◽  
R. J. Goldstein

Abstract Until recently, computer simulation of filling flows in die casting have been focused on the determination of the free surfaces of injected liquid and has had difficulties to relate the flows with the formation of casting porosity. Flow visualization in scaled experiments indicates that the liquid has very complicated surfaces and that, in many cases, the surfaces break up and create a mixture zone with liquid droplets and air. This is especially true in pressure die casting where liquid metal is injected at a speed in order of 100 m/s and at a pressure up to 100 atm. The Reynolds number in the process could be above 105 and the Weber number above 102. Surface tension is far from sufficiently strong to sustain disturbance growth due to various instabilities. It is hard to keep the liquid as a separate continuous phase. Based on flow visualization experiments, a mathematical model is proposed as an alternative and effective simplification to the traditional tracing methods. Instead of determining the continuous free surfaces, the model tries to predict distributions of mass fraction of the injected liquid by solving a partial differential equation of mass transport together with the Navier-Stokes equations. Appropriate unsteady schemes of a finite difference analysis have been developed and are described in the paper. Results with an uniform straight injection into a die cavity are presented, which have re-created the filling patterns of the flows in experiments.

Author(s):  
A. Javadi ◽  
M. Taeibi-Rahni ◽  
D. Bastani ◽  
K. Javadi

For the reason that flow expansion model (developed in our previous work) for evaluating mass transfer during droplet formation involves with manifest hydrodynamic aspects, in this research computational simulation of this phenomenon was done for characterization of hydrodynamics effects on the mass transfer during droplet formation. For this purpose, an Eulerian volume tracking computational code based on volume of fluid (VOF) method was developed to solve the transient Navier-Stokes equations for the axisymmetric free-boundary problem of a Newtonian liquid that is dripping vertically and breaking as drops into another immiscible Newtonian fluid. The effects of hydrodynamics effects on the mass transfer during droplet formation have been discussed in the three features, including: 1- The intensity of the interaction between two phases 2-The strength and positions of the main vorticities on the nozzle tip 3-The effects of local interfacial vorticities (LIV). These features are considered to explain the complexities of drop formation mass transfer between Ethyl Acetoacetate (presaturated with water) as an organic dispersed phase and water as continuous phase for two big and small nozzle sizes (0.023 and 0.047 cm, ID) which have different level of mass transfer rate particularly in first stages of formation time.


2008 ◽  
Vol 22 (16) ◽  
pp. 2517-2527 ◽  
Author(s):  
ZHANHONG WAN ◽  
ZHILIN SUN ◽  
ZHENJIANG YOU ◽  
QIYAN ZHANG

Sediment transport in fully developed turbulent open channel flow has been investigated using large eddy simulation (LES) of the incompressible Navier–Stokes equations. The scalar transport equation of the sediments concentration, which is based on the continuous-phase approach, is adopted. The settling process is taken into account with a modified settling velocity appearing in the sediment concentration equation. A Smagorinsky model allowing for the interaction between the fluid flow and the suspended sediment is used to simulate the unresolved, subgrid scale terms. The LES results are compared with the experimental data, and good general agreement is achieved.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
A. Ponce-Torres ◽  
M. Rubio ◽  
M. A. Herrada ◽  
J. Eggers ◽  
J. M. Montanero

Abstract We analyze the breakup of a pendant water droplet loaded with SDS. The free surface minimum radius measured in the experiments is compared with that obtained from a numerical solution of the Navier–Stokes equations for different values of the shear and dilatational surface viscosities. This comparison shows the small but measurable effect of the surface viscous stresses for sufficiently small spatiotemporal distances from the breakup point, and allows to establish upper bounds for the values of the shear and dilatational viscosities. We study numerically the distribution of Marangoni and viscous stresses over the free surface as a function of the time to the pinching, and describe how surface viscous stresses grow in the pinching region as the free surface approaches its breakup. When Marangoni and surface viscous stresses are taken into account, the surfactant is not swept away from the thread neck in the time interval analyzed. Surface viscous stresses eventually balance the driving capillary pressure in the pinching region for small enough values of the time to pinching. Based on this result, we propose a scaling law to account for the effect of the surface viscosities on the last stage of temporal evolution of the neck radius.


Author(s):  
Cristinel Mares ◽  
Mark Atherton ◽  
Masaaki Miyatake ◽  
Tadeusz Stolarski

In this paper four design embodiments that employ SFL to separate surfaces are explored. Section 2 details the fundamental principles of levitation based on SFL and associated Navier-Stokes equations. Section 3 describes four design embodiments utilising squeeze-film mechanism, namely a journal bearing, flexible frame, plain levitating plate and a non-contact gripper, in terms of their analytical description plus experimental and numerical results. Section 4 concludes the paper. The paper demonstrates that the squeeze-film levitation is a feasible idea and can be implemented by a number of different embodiments. The mechanism of levitation is quite complex, and its computer modelling requires advanced numerical methods. All designs presented have been numerically modelled and the outcomes experimentally validated, which can be considered as the main contribution of this article.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 56-63
Author(s):  
W. Kyle Anderson ◽  
James C. Newman ◽  
David L. Whitfield ◽  
Eric J. Nielsen

Sign in / Sign up

Export Citation Format

Share Document