A Knowledge Base Data Representation for Collaborative Mechanical Design

Author(s):  
Richard L. Nagy ◽  
David G. Ullman ◽  
Thomas G. Dietterich

Abstract Collaborative design projects place additional burdens on current design documentation practices. The literature on group design has repeatedly documented the existence of problems in design decision making due to the unavailability of design information. This paper describes a data representation developed for collaborative mechanical design information. The data representation is used to record the history of the design as a sequence of design decisions. The resulting knowledge base records the final specifications, the alternatives which were considered during the design process, and the designers’ rationale for choosing the final design parameters. It is currently used in a computerized knowledge base system under development by the Design Process Research Group (DPRG), at the authors’ institution (OSU).

Author(s):  
Ralf Stetter ◽  
David G. Ullman

Abstract This paper presents an approach for identifying team-roles. The proposed approach is based on the interpretation of a design process in terms of the behavior of the members of the team. Behavior is codified in terms of the team member’s process and physical activities. In this study a collaborative design process was recorded on video-tape and analyzed in detail. The process was decomposed into distinct sections called events. In every event each team member was assigned a team-role taking into consideration the activity of the team member, i.e. what the team member does, how activity of the team member, i.e. what the team member does, how the team member does it, and the context of the event. A graphical representation of the results called ‘role-profile’ was developed making it possible to clearly identify a basic team-role for every subject in the observed design process.


Author(s):  
Zhiqiang Chen ◽  
Zahed Siddique

The emergence of computer and network technology has provided opportunities for researchers to construct and build systems to support dynamic, real-time, and collaborative engineering design in a concurrent manner. This paper provides an understanding of the product design in a distributed environment where designers are in different geographic locations and are required to be involved in the design process to ensure successful product design. A design process model that captures the major interactions among stakeholders is presented, based on the observation of cooperation and collaboration. The stakeholders’ interactions are divided into activity and system level to distinguish the interactions in group design activities and design perspective evolution. An initial computer implementation of the design model is presented. The design system consists of a set of tools associated with design and a management system to facilitate distributed designers to support various design activities, especially conceptual design. Our research emphasis of design collaboration in this paper is: (i) Model a Cooperative-collaborative design process; (ii) Support synchronized design activities; and (iii) Structure the complex relations of various design perspectives from engineering disciplines.


Author(s):  
Karen J. Ostergaard ◽  
Joshua D. Summers ◽  
Georges Fadel

The paper presents a new model for collaborative design. The model is analogous to electrical circuits with current (rate of design artifact synthesis and analysis), voltage (knowledge that drives the design process), and resistance (barriers to the exchange of design information). The resistances are identified from a collaborative design taxonomy. This model is illustrated through a simple example. Extensions and an assessment of the model are provided.


2012 ◽  
Vol 271-272 ◽  
pp. 974-980 ◽  
Author(s):  
Pai Zheng ◽  
Víctor Hugo Torres ◽  
José Ríos ◽  
Gang Zhao

The design process comprises the Conceptual Phase, the Embodiment Phase and the Detail Design Phase in which commercial PLM/CAD systems mainly support the latter ones. This situation causes the discontinuity in the overall design information flow: Customer Needs (CNs) - Functional Requirements (FRs) – Design Parameters (DPs) – Key Characteristics (KCs) – Geometric Parameters (GPs). There is also a lack of knowledge reuse in routine design process, resulting in large cost-waste of the overall design process. Aiming to enhance the continuity of the design information flow and facilitate the knowledge reuse, this paper makes use of a knowledge-based framework to integrate conceptual design tools: Quality Function Deployment (QFD), Axiomatic Design (AD), Failure Mode and Effects Analysis (FMEA) and the MOKA methodology into CATIA v5 system. A knowledge-based application (KBA) on the large aircraft y-bolt component design is presented as a case study to validate the proposed framework. The result shows how this novel integrated framework and KBA system could benefit designers in a practical way.


2020 ◽  
Vol 64 (3) ◽  
pp. 221-228
Author(s):  
Tamás Orosz ◽  
Zoltán Ádám Tamus

Since the electrical machine design is a complex task it can be divided into sub-problems, e.g. preliminary and final design processes and checking of the final design. This paper deals with the preliminary design process, which provides the key-design parameters of the electrical machine. Traditionally, these electrical machine models in preliminary design phase neglect or use oversimplified insulation system models and the tap changing selection is not involved during the calculation of key-design parameters. The aim of this study is to assess the effect of the insulation distance minimization and tap-changing on the key design parameters of a cost-optimized large power transformer. For this purpose, the paper shows some examples, where the cost optimal design — in contrast to the classical insulation design rule — contains larger insulation distances than the possible minimum values. The effect of tap-changing methods are also investigated. These cost optimization made by a verified, metaheuristic method-based transformer optimization algorithm. The results show involving the insulation design and tap-changing selection into the preliminary design process can provide more economical designs.


Author(s):  
Stephen P. Hoover ◽  
James R. Rinderle

Abstract Abstractions serve to reduce the complexity of the design process by providing a simple yet still useful representation of the design. Abstractions change one or all of the focus, resolution and accuracy of the design representation. Focusing abstractions direct the designer’s attention to fundamental relationships amongst design variables and requirements. The process of forming focusing abstractions incorporates the design relations and variables that are of concern to the designer, while mitigating the complexity of the resulting design view for the designer. The complexity is minimized by reducing the number of variables and relations considered simultaneously. This is done in a manner which allows the designer to determine the need for further refinements in configuration, to make parametric decisions, and to identify critical design relationships. The appropriate use of focusing abstractions can improve both the design process and the final design. Several basic approaches to creating focusing abstractions are described and one method, based upon Gröbner Bases, is developed in detail. This method is appropriate for a design object representation consisting of parametric constraints represented as sets of polynomial equations. This approach is demonstrated within the context of a sample electro-mechanical design problem, a cordless screwdriver.


2012 ◽  
Vol 155-156 ◽  
pp. 51-55
Author(s):  
Jian Jun Qin ◽  
Yan An Yao ◽  
Jian Wei Yang

To input rational customer requirements into engineering design process more effectively and improve product design quality and market response efficiency, this paper focuses on the interaction between market analysis and engineering design decision for the modular product. While many researchers have successful evaluated and optimized the design schemes, few, if any, have provided a bridge the customer selection and firms product development decision. After a review of the literature we introduce the flow of user-engineering design interaction including both maximize the utility of customer and the profit of the firm. On the user and market analysis flow, customer requirements are defined according to the target market, then the customer selection possibility link to the product attributes by utility function. Accordingly, the alternatives are corresponding to the module different product, and then using decision support problem method to search the optimal design parameters. Two design domains can share the design information and realize the cooperative design process by computer computing platform.


2010 ◽  
Vol 44-47 ◽  
pp. 1987-1990
Author(s):  
De Fang Liu ◽  
Bin Wang ◽  
Hong Pan Wu

According to the characters of mechanical product design, product design knowledge is classified into explicit knowledge and indefinite knowledge. A knowledge-driven product design system model was proposed based on the knowledge management. To meet the normal product design process, the design system structure was built on four layers. A mixed knowledge reasoning strategy was proposed, which is combined by design cases, models, and rules. The system provides a public integration interface, so different design tools such as UG NX, Catia and Pro-E can be applied. To resolve the design conflict in product design process, a collaborative design technique was put forward that the CAD, CAPP, CAM engineers worked togeth


Author(s):  
William H. Wood ◽  
Maria C. Yang ◽  
Mark R. Cutkosky ◽  
Alice M. Agogino

Abstract Capturing and reusing design experience holds great potential for improving designer effectiveness The first step toward leveraging lessons from the past for design decision making is gaining access to them Because decisions early in the design process largely determine its ultimate success, it is important to embrace the informal, unstructured information that is prevalent during conceptual design Information retrieval is proposed as the basis for access to this informal design information By creating hierarchical thesauri of life cycle design issues, design process terms, and component and system functional decompositions, we hope to establish an intermediate language in which design context can be captured Experiments in design information retrieval exploiting design context for determining document similarity within design case studies and design notebooks demonstrate the value of this approach.


Sign in / Sign up

Export Citation Format

Share Document