A Robotic Tool Transformation Teacher

Author(s):  
Scott E. Hunt ◽  
Stephen J. Derby

Abstract The objective of this project was to design and build a system for teaching robot tool transformations. A PUMA and an Adept One robot were used for testing the feasibility of the system. The Tool Transformation Teacher provides for both the manual and programmed control of a robotic manipulator with respect to a tool coordinate system, thus increasing robot flexibility.

2017 ◽  
Vol 29 (2) ◽  
pp. 395-405
Author(s):  
Kyo Kutsuzawa ◽  
◽  
Sho Sakaino ◽  
Toshiaki Tsuji

[abstFig src='/00290002/12.jpg' width='260' text='Axes in the compass coordinate system' ] Robotic tool use is one of various approaches for actualizing versatility of robots, and is thus the focus of many studies. However, selection of the controllers for tool use and how to design them remains indeterminate. This paper addresses the task of drawing a circle with a compass as an example of tool use. This task mandates to deal with complex contact at multiple points and needs to educe functions of the compass to draw a circle accurately. This paper demonstrates the implementation and corresponding method of compass controller design. The method of designing the controller for the compass entails decomposing the usage of the compass into semantic units and subsequently defining a coordinate system and fabricating the controller via mapping of the semantic units to axes. The implementation of a controller for compass use indicates that the ability of the compass to accurately draw a circle is educed via mechanical constraints of the compass. We validated the implemented controller by drawing a circle and comparing the result to a circle drawn using a pencil.


Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai

An intuitive approach for the structural synthesis of serial robotic manipulator subject to specific motion constraints is presented in this paper. According to the required f-DOF αRβT motion of the end-effector, for f = 2, 3, … or 6 and α, β = 0, 1, 2 or 3, all feasible serial-type robot structures can be systematically generated via the proposed method. The approach begins at the enumeration of joint connectivity, proceeds with the assignment of joint types, and continues by the consideration of motion constraints for the robot. A couple of examples, including the synthesis of the 3-, 4- and 5-DOF serial manipulators, are furnished for illustration. It shows that this method is especially exploitable when the end-effector is required to be immovable in certain orientations or directions with respect to either local coordinate system or global coordinate system. The result is particularly beneficial for practical industrial applications.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


2013 ◽  
Vol 50 (10) ◽  
pp. 840-844
Author(s):  
Yukiya INOUE ◽  
Mayumi KIHARA ◽  
Junko YOSHIMURA ◽  
Naoki YOSHIDA ◽  
Kenji MATSUMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document