Design Actor-Based Representation of Iterative Design Process for Embodiment Design

Author(s):  
Jeong-Soo Ahn ◽  
Kyihwan Park ◽  
Richard H. Crawford

Abstract Design activities consists not only of product design, but also of development of the process by which the product will be designed. However, development and documentation of computational design processes are largely unsupported by commercial CAD systems. This paper proposes a new computational architecture for procedural representation of embodiment design processes. A design actor is defined as an independent computational unit of the design process. The proposed architecture models a design process as a sequence of design tasks by representing individual parameters and tasks as design actors, and the sequence of design tasks as a network of design actors assembled according to their functional dependencies. The use of design actors promotes modularity in representing design problems and solution processes. Iterative design processes can be represented since the architecture provides explicit feedforward and feedback information exchange between design actors. The paper describes an object-oriented implementation of the design actor architecture, and demonstrates the approach with an example design of an air-core solenoid in an optical disk drive.

Author(s):  
Margaret Wong ◽  
Akudasuo Ezenyilimba ◽  
Alexandra Wolff ◽  
Tyrell Anderson ◽  
Erin Chiou ◽  
...  

Urban Search and Rescue (USAR) missions often involve a need to complete tasks in hazardous environments. In such situations, human-robot teams (HRT) may be essential tools for future USAR missions. Transparency and explanation are two information exchange processes where transparency is real-time information exchange and explanation is not. For effective HRTs, certain levels of transparency and explanation must be met, but how can these modes of team communication be operationalized? During the COVID-19 pandemic, our approach to answering this question involved an iterative design process that factored in our research objectives as inputs and pilot studies with remote participants. Our final research testbed design resulted in converting an in-person task environment to a completely remote study and task environment. Changes to the study environment included: utilizing user-friendly video conferencing tools such as Zoom and a custom-built application for research administration tasks and improved modes of HRT communication that helped us avoid confounding our performance measures.


2018 ◽  
Vol 25 (8) ◽  
pp. 1034-1052
Author(s):  
Jeevan Jacob ◽  
Koshy Varghese

Purpose The building design processes today are complex, involving many disciplines and issues like collaboration, concurrency and collocation. Several studies have focused on understanding and modeling formal information exchange in these processes. Few past studies have also identified the importance of informal information exchanges in the design process and proposed passive solutions for facilitating this exchange. The purpose of this paper is to term the informal information as ad hoc information and explores if components of ad hoc information exchanges can be actively managed. Design/methodology/approach An MDM-based framework integrating product, process and people dependencies is proposed and a prototype platform to implement this framework is developed. The demonstration on the usage of this platform to identify information paths during collaboration and hence manage ad hoc information exchanges is presented through an example problem. Findings Based on the effectiveness of the prototype platform in identifying information paths for design queries, it is concluded that the proposed framework is useful for actively managing some components of ad hoc information exchange. Originality/value This research enables the design manager/participants to make a more informed decision on requesting and releasing design information.


Author(s):  
M. Messer ◽  
J. H. Panchal ◽  
J. K. Allen ◽  
F. Mistree ◽  
V. Krishnamurthy ◽  
...  

Designers are continuously challenged to manage complexity in embodiment design processes (EDPs), in the context of integrated product and materials design. In order to manage complexity in design processes, a systematic strategy to embodiment design process generation and selection is presented in this paper. The strategy is based on a value-of-information-based Process Performance Indicator (PPI). The approach is particularly well-suited for integrated product and materials design, and all other scenarios where knowledge of a truthful, i.e., perfect, design process and bounds of error are not available in the entire design space. The proposed strategy is applied to designing embodiment design processes for photonic crystal waveguides in the context of a next-generation optoelectronic communication system. In this paper, it is shown that the proposed strategy based on the Process Performance Indicator is useful for evaluating the performance of embodiment design processes particularly when accuracy of the prediction or the associated error bounds are not known.


Author(s):  
Camilo POTOCNJAK-OXMAN

Stir was a crowd-voted grants platform aimed at supporting creative youth in the early stages of an entrepreneurial journey. Developed through an in-depth, collaborative design process, between 2015 and 2018 it received close to two hundred projects and distributed over fifty grants to emerging creatives and became one of the most impactful programs aimed at increasing entrepreneurial activity in Canberra, Australia. The following case study will provide an overview of the methodology and process used by the design team in conceiving and developing this platform, highlighting how the community’s interests and competencies were embedded in the project itself. The case provides insights for people leading collaborative design processes, with specific emphasis on some of the characteristics on programs targeting creative youth


2016 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Maral Babapour Chafi

Designers engage in various activities, dealing with different materials and media to externalise and represent their form ideas. This paper presents a review of design research literature regarding externalisation activities in design process: sketching, building physical models and digital modelling. The aim has been to review research on the roles of media and representations in design processes, and highlight knowledge gaps and questions for future research.


1987 ◽  
Author(s):  
Teruo Fujita ◽  
Nobuo Takeshita ◽  
Morihiro Karaki ◽  
Mitsushige Kondo ◽  
Kenjiro Kime

2021 ◽  
Vol 12 (01) ◽  
pp. 164-169
Author(s):  
Laurie Lovett Novak ◽  
Jonathan Wanderer ◽  
David A. Owens ◽  
Daniel Fabbri ◽  
Julian Z. Genkins ◽  
...  

Abstract Background The data visualization literature asserts that the details of the optimal data display must be tailored to the specific task, the background of the user, and the characteristics of the data. The general organizing principle of a concept-oriented display is known to be useful for many tasks and data types. Objectives In this project, we used general principles of data visualization and a co-design process to produce a clinical display tailored to a specific cognitive task, chosen from the anesthesia domain, but with clear generalizability to other clinical tasks. To support the work of the anesthesia-in-charge (AIC) our task was, for a given day, to depict the acuity level and complexity of each patient in the collection of those that will be operated on the following day. The AIC uses this information to optimally allocate anesthesia staff and providers across operating rooms. Methods We used a co-design process to collaborate with participants who work in the AIC role. We conducted two in-depth interviews with AICs and engaged them in subsequent input on iterative design solutions. Results Through a co-design process, we found (1) the need to carefully match the level of detail in the display to the level required by the clinical task, (2) the impedance caused by irrelevant information on the screen such as icons relevant only to other tasks, and (3) the desire for a specific but optional trajectory of increasingly detailed textual summaries. Conclusion This study reports a real-world clinical informatics development project that engaged users as co-designers. Our process led to the user-preferred design of a single binary flag to identify the subset of patients needing further investigation, and then a trajectory of increasingly detailed, text-based abstractions for each patient that can be displayed when more information is needed.


Author(s):  
Matthias Messer ◽  
Jitesh Panchal ◽  
Gautam Puri ◽  
Janet Allen ◽  
Farrokh Mistree

Author(s):  
Andrew P. Sabelhaus ◽  
Hao Ji ◽  
Patrick Hylton ◽  
Yakshu Madaan ◽  
ChanWoo Yang ◽  
...  

The Underactuated Lightweight Tensegrity Robotic Assistive Spine (ULTRA Spine) project is an ongoing effort to create a compliant, cable-driven, 3-degree-of-freedom, underactuated tensegrity core for quadruped robots. This work presents simulations and preliminary mechanism designs of that robot. Design goals and the iterative design process for an ULTRA Spine prototype are discussed. Inverse kinematics simulations are used to develop engineering characteristics for the robot, and forward kinematics simulations are used to verify these parameters. Then, multiple novel mechanism designs are presented that address challenges for this structure, in the context of design for prototyping and assembly. These include the spine robot’s multiple-gear-ratio actuators, spine link structure, spine link assembly locks, and the multiple-spring cable compliance system.


2000 ◽  
Vol 39 (Part 1, No. 2B) ◽  
pp. 843-845 ◽  
Author(s):  
Jinsong Han ◽  
Kai Meng Hock ◽  
Wenhua Li ◽  
Tow Chong Chong ◽  
Kenji Shintani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document