Optimal Control Design of a Bimorph Optical Beam Deflector

Author(s):  
Chang-Po Chao ◽  
Jeng-Sheng Huang ◽  
Ching-Lung Ou Yung ◽  
Rong-Fong Fung

Abstract The optical beam deflector is composed of two piezoelectric layers, one sandwiched brass layer in the middle with both ends clamped and a mirror attached to the upper surface of the top piezoelectric layer in the central position. This structure is designed to deflect the mirror to a certain angular position by applying external voltage supply to piezo-layers. This study proposes an optimal angular position control scheme of the attached mirror. The governing partial differential equations are first derived for the ensuing analysis and control design, which is followed by the establishment of finite element model in ten nodes specified at some longitudinal points of the optical beam deflector. In order to achieve a faster convergent rate for the deflector to reach the desired angular position, the optimal control of LQ regulator with final states fixed is employed to explore the possibility of shorter transient response and less cost of control effort and states. The optimal feedback control is obtained based on solving a dynamic Riccati equation backward in time. The numerical simulation results are finally provided to validate the theoretical control design.

1996 ◽  
Vol 118 (3) ◽  
pp. 482-488 ◽  
Author(s):  
Sergio Bittanti ◽  
Fabrizio Lorito ◽  
Silvia Strada

In this paper, Linear Quadratic (LQ) optimal control concepts are applied for the active control of vibrations in helicopters. The study is based on an identified dynamic model of the rotor. The vibration effect is captured by suitably augmenting the state vector of the rotor model. Then, Kalman filtering concepts can be used to obtain a real-time estimate of the vibration, which is then fed back to form a suitable compensation signal. This design rationale is derived here starting from a rigorous problem position in an optimal control context. Among other things, this calls for a suitable definition of the performance index, of nonstandard type. The application of these ideas to a test helicopter, by means of computer simulations, shows good performances both in terms of disturbance rejection effectiveness and control effort limitation. The performance of the obtained controller is compared with the one achievable by the so called Higher Harmonic Control (HHC) approach, well known within the helicopter community.


In the control design are overcome restrictions connected with the observability of the Monod kinetics and with the singularities of the optimal control of Monod kinetic models.


Author(s):  
Bahman Abbasi ◽  
Keith Wait ◽  
Michael Kempiak

Increasingly stringent industry standards have posed significant challenges on manufacturers to enhance the design and performance of household refrigerators. One of the least expensive and most effective means of improving the system is optimizing the control strategy. Some of the most promising control systems, such as adaptive and optimal control methods, require an accurate model of the system to guide the control effort. However, the complexity and interconnectedness of thermal and refrigerant flow phenomena make developing modern control systems a particularly challenging aspect of designing refrigerators, in spite of many decades of research and development. There exist models to correlate the desired compartments’ temperatures to that of the evaporator coil. However, there is a lack of a general approach to translate the required evaporator temperature to a compressor speed that provides it in an energy efficient manner. This work introduces a method to make that connection. The technique developed in this work can be adjusted for implementation on various refrigerator sizes and platforms to help modulate and control the compressor speed in real time.


Author(s):  
Kevin López ◽  
Rubén Garrido ◽  
Sabine Mondié

The goal of this work is to propose a new time-delay control law called the cascade proportional integral retarded controller, which is aimed at position control of DC servodrives. The proposed controller has a cascade inner loop-outer loop structure. The inner loop is endowed with an integral retarded algorithm, and regulates the servodrive angular velocity. A proportional controller closes the outer loop whose goal is to regulate the servodrive angular position. The tuning of the cascade proportional integral retarded controller is accomplished into two steps. In the first step, the velocity of the inner loop is tuned by assigning a triple dominant root. The second step tunes the outer position loop. It is also possible to modify the cascade proportional integral retarded controller to avoid velocity measurements without adding extra filters. Moreover, the cascade topology of the cascade proportional integral retarded controller makes it easy to introduce a nonlinear saturated gain in the outer loop. This controller termed as the cascade nonlinear proportional integral retarded controller prevents overshoots for large values of the set point, avoids excessive control effort, and maintains a prescribed value of the angular velocity. Experiments in real-time using a laboratory prototype allow assessing the performance of the proposed controllers.


Author(s):  
Yang Lin ◽  
Yang Shi ◽  
Richard Burton

Hydraulic position control systems play an important role in industrial automation. This paper explores the application of discrete-time H2-optimal control for a hydraulic position control system (HPCS). By minimizing the H2-norm of the system, the discrete-time robust H2-optimal control both stabilizes the plant and minimizes the root-mean-square of the servo position error simultaneously. The intuitive nature of this advanced approach helps to manage the selection of design parameters, whereas, classical methods provide less insight into strategies for parameter selection and control design. Additionally, the powerful ability to address disturbances and uncertainty in the robust H2-optimal design offers a more direct alternative to the ad hoc and iterative nature of classical methods for the hydraulic servo position system. Computer simulations illustrate the design procedure and the effectiveness of the proposed method. Experimental studies which employ the H2-optimal control on a hydraulic positioning system are also conducted and the results show that the method is suitable for practical applications.


Robotica ◽  
2021 ◽  
pp. 1-27
Author(s):  
K. D. Do

Abstract This paper formulates and solves a new problem of global practical inverse optimal exponential path-tracking control of mobile robots driven by Lévy processes with unknown characteristics. The control design is based on a new inverse optimal control design for nonlinear systems driven by Lévy processes and ensures global practical exponential stability almost surely and in the pth moment for the path-tracking errors. Moreover, it minimizes cost function that penalizes tracking errors and control torques without having to solve a Hamilton–Jacobi–Bellman or Hamilton–Jaccobi–Isaacs equation.


2011 ◽  
Vol 291-294 ◽  
pp. 2943-2948
Author(s):  
Bao Quan Jin ◽  
Yan Kun Wang

There are some problem for Strip transmission process, such as low deviation information accuracy , poor reliability, poor control results,the electro-hydraulic servo central position control system of Strip based on the principle of differential capacitance was designed. The differential connection is used for eliminating signal drift and the nonlinear characteristics,high frequency power supply is used for reducing output impedance and improving the system bandwidth, double shielded is used for eliminating the impact of parasitic capacitance, the electro-hydraulic servo central position control system based on fuzzy PID is designed. Research shows that the measuring circuit and control system are with high precision, good reliability, maintenance-free advantages.


Author(s):  
Thananchai Leephakpreeda

The aim of this research paper is to systematically present an optimal control of a dc servomotor for the airflow measurement in both the magnitude and the direction. During measuring airflow, the dc servomotor drives a paddle around the rotor axis in a field. The torsional load of the dc servomotor is caused from resistance of the airflow over the moving paddle normal to the flow. The variations on the torsional load in one revolution of rotation can be characterized from the magnitude and direction of the airflow. In other words, the magnitude and direction of airflow cause a periodic function of the torsional load with respect to the angular position of the paddle. By using Fourier analysis, it is found that the magnitude and direction of the airflow can be determined from the coefficients of the Fourier series. Typically, the torsional load of the dc servomotor, unlike the rotor speed, cannot be measured by the built-in device. In this work, it is determined by applying the extended Luenberger observer method. A state-feedback controller with the observer based on H2 control design is implemented to regulate the dc servomotor. The experimental results on the measurement of airflow show the viability of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document