Isomorphism Identification of Graphs of Kinematic Chains

Author(s):  
Huafeng Ding ◽  
Zhen Huang

Isomorphism identification of graphs is one of the most important and challenging problems in the fields of mathematics, computer science and mechanisms. This paper attempts to solve the problem by finding a unique representation of graphs. First, the perimeter loop of a graph is identified from all the loops of the graph obtained through a new algorithm. From the perimeter loop a corresponding perimeter graph is derived, which renders the forms of the graph canonical. Then, by relabelling the perimeter graph, the canonical perimeter graph is obtained, reducing the adjacency matrices of a graph from hundreds of thousands to several or even just one. On the basis of canonical adjacency matrix set, the unique representation of the graph, the characteristic adjacency matrix, is obtained. In such a way, isomorphism identification, sketching, and establishment of the database of common graphs, including the graphs of kinematic chains, all become easy to realize. Computational complexity analysis shows that, in the field of kinematic chains the approach is much more efficient than McKay’s algorithm which is considered the fastest so far. Our algorithm remains efficient even when the links of kinematic chains increase into the thirties.

2006 ◽  
Vol 129 (9) ◽  
pp. 915-923 ◽  
Author(s):  
Huafeng Ding ◽  
Zhen Huang

Some new concepts, such as the perimeter loop, the maximum perimeter degree-sequence, and the perimeter topological graph, are first presented in this paper, and the method for obtaining the perimeter loop is also involved. Then, based on the perimeter topological graph and some rules for relabeling its vertices canonically, a one-to-one descriptive method, the canonical adjacency matrix set of kinematic chains, is proposed. Another very important characteristic of the descriptive method is that in the canonical adjacency matrix set the element number is reduced dramatically, usually to only one. After that, an effective method to identify isomorphism of kinematic chains is given. Finally, some typical examples of isomorphism identification including two 28-vertex topological graphs are presented in this paper.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1522
Author(s):  
Anna Concas ◽  
Lothar Reichel ◽  
Giuseppe Rodriguez ◽  
Yunzi Zhang

The power method is commonly applied to compute the Perron vector of large adjacency matrices. Blondel et al. [SIAM Rev. 46, 2004] investigated its performance when the adjacency matrix has multiple eigenvalues of the same magnitude. It is well known that the Lanczos method typically requires fewer iterations than the power method to determine eigenvectors with the desired accuracy. However, the Lanczos method demands more computer storage, which may make it impractical to apply to very large problems. The present paper adapts the analysis by Blondel et al. to the Lanczos and restarted Lanczos methods. The restarted methods are found to yield fast convergence and to require less computer storage than the Lanczos method. Computed examples illustrate the theory presented. Applications of the Arnoldi method are also discussed.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 601
Author(s):  
Mahmoud Helal ◽  
Jong Wan Hu ◽  
Hasan Eleashy

In this work, a new algorithm is proposed for a unique representation for simple and multiple joint planar kinematic chains (KCs) having any degree of freedom (DOF). This unique representation of KCs enhances the isomorphism detection during the structural synthesis process of KCs. First, a new concept of joint degree is generated for all joints of a given KC based on joint configuration. Then, a unified loop array (ULA) is obtained for each independent loop. Finally, a unified chain matrix (UCM) is established as a unique representation for a KC. Three examples are presented to illustrate the proposed algorithm procedures and to test its validity. The algorithm is applied to get a UCM for planar KCs having 7–10 links. As a result, a complete atlas database is introduced for 7–10-link non-isomorphic KCs with simple or/and multiple joints and their corresponding unified chain matrix.


2021 ◽  
Vol 12 (2) ◽  
pp. 1061-1071
Author(s):  
Jinxi Chen ◽  
Jiejin Ding ◽  
Weiwei Hong ◽  
Rongjiang Cui

Abstract. A plane kinematic chain inversion refers to a plane kinematic chain with one link fixed (assigned as the ground link). In the creative design of mechanisms, it is important to select proper ground links. The structural synthesis of plane kinematic chain inversions is helpful for improving the efficiency of mechanism design. However, the existing structural synthesis methods involve isomorphism detection, which is cumbersome. This paper proposes a simple and efficient structural synthesis method for plane kinematic chain inversions without detecting isomorphism. The fifth power of the adjacency matrix is applied to recognize similar vertices, and non-isomorphic kinematic chain inversions are directly derived according to non-similar vertices. This method is used to automatically synthesize 6-link 1-degree-of-freedom (DOF), 8-link 1-DOF, 8-link 3-DOF, 9-link 2-DOF, 9-link 4-DOF, 10-link 1-DOF, 10-link 3-DOF and 10-link 5-DOF plane kinematic chain inversions. All the synthesis results are consistent with those reported in literature. Our method is also suitable for other kinds of kinematic chains.


Author(s):  
T. J. Jongsma ◽  
W. Zhang

Abstract This paper deals with the identification of kinematic chains. A kinematic chain can be represented by a weighed graph. The identification of kinematic chains is thereby transformed into the isomorphism problem of graph. When a computer program has to detect isomorphism between two graphs, the first step is to set up the corresponding connectivity matrices for each graph, which are adjacency matrices when considering adjacent vertices and the weighed edges between them. Because these adjacency matrices are dependent of the initial labelling, one can not conclude that the graphs differ when these matrices differ. The isomorphism problem needs an algorithm which is independent of the initial labelling. This paper provides such an algorithm.


Author(s):  
Ines Elleuch ◽  
Fatma Abdelkefi ◽  
Mohamed Siala

This chapter provides a deep insight into multiple antenna eigenvalue-based spectrum sensing algorithms from a complexity perspective. A review of eigenvalue-based spectrum-sensing algorithms is provided. The chapter presents a finite computational complexity analysis in terms of Floating Point Operations (flop) and a comparison of the Maximum-to-Minimum Eigenvalue (MME) detector and a simplified variant of the Multiple Beam forming detector as well as the Approximated MME method. Constant False Alarm Performances (CFAR) are presented to emphasize the complexity-reliability tradeoff within the spectrum-sensing problem, given the strong requirements on the sensing duration and the detection performance.


Sign in / Sign up

Export Citation Format

Share Document