Computational Complexity Analysis for Problems in Elastic Optical Networks

Author(s):  
Bijoy Chand Chatterjee ◽  
Eiji Oki
Author(s):  
Ines Elleuch ◽  
Fatma Abdelkefi ◽  
Mohamed Siala

This chapter provides a deep insight into multiple antenna eigenvalue-based spectrum sensing algorithms from a complexity perspective. A review of eigenvalue-based spectrum-sensing algorithms is provided. The chapter presents a finite computational complexity analysis in terms of Floating Point Operations (flop) and a comparison of the Maximum-to-Minimum Eigenvalue (MME) detector and a simplified variant of the Multiple Beam forming detector as well as the Approximated MME method. Constant False Alarm Performances (CFAR) are presented to emphasize the complexity-reliability tradeoff within the spectrum-sensing problem, given the strong requirements on the sensing duration and the detection performance.


2014 ◽  
Vol 591 ◽  
pp. 172-175
Author(s):  
M. Chandrasekaran ◽  
P. Sriramya ◽  
B. Parvathavarthini ◽  
M. Saravanamanikandan

In modern years, there has been growing importance in the design, analysis and to resolve extremely complex problems. Because of the complexity of problem variants and the difficult nature of the problems they deal with, it is arguably impracticable in the majority time to build appropriate guarantees about the number of fitness evaluations needed for an algorithm to and an optimal solution. In such situations, heuristic algorithms can solve approximate solutions; however suitable time and space complication take part an important role. In present, all recognized algorithms for NP-complete problems are requiring time that's exponential within the problem size. The acknowledged NP-hardness results imply that for several combinatorial optimization problems there are no efficient algorithms that realize a best resolution, or maybe a close to best resolution, on each instance. The study Computational Complexity Analysis of Selective Breeding algorithm involves both an algorithmic issue and a theoretical challenge and the excellence of a heuristic.


2008 ◽  
Vol 23 (3) ◽  
pp. 227-260 ◽  
Author(s):  
DANIEL BRYANT ◽  
PAUL KRAUSE

AbstractThis article surveys existing practical implementations of both defeasible and argumentation-based reasoning engines and associated literature. We aim to summarize the current state of the art in the research area, show that there are many similiarities and connections between the various implementations and also highlight the differences regarding evaluation goals and strategies. An important goal of this paper is to argue for the need for well-designed empirical evaluations, as well as formal complexity analysis, in order to justify the practical applicability of a reasoning engine. There are indeed many challenges to be faced in developing implementations of argumentation. Not least of these is the inherent computational complexity of the formal models. We cover some of the ways these challenges have been addressed, and provide pointers for future directions in realizing the goal of practical argumentation.


Sign in / Sign up

Export Citation Format

Share Document