Non Contact Precision Actuation and Optimal Actuator Placement of Hybrid Photostrictive Beam Structronic Systems

Author(s):  
Hong-Hao Yue ◽  
Zong-Quan Deng ◽  
Horn-Sen Tzou

Non-contact wireless actuation offers many advantages to precision control, as compared with conventional hard-wired actuation mechanisms. High-energy laser or ultraviolet lights irradiating on photostrictive materials can induce a photodeformation process involving two fundamental effects: 1) the photovoltaic effect and 2) the converse piezoelectric effect. This photodeformation process transforms photonic energy to mechanical strain/stress that can be directly used for actuation and control applications. With specific design configurations, the photodeformation process of photostrictive actuators can induce various control forces and moments applied to precision manipulation and control of mechatronic and structronic systems. In this study, fundamental photodeformation coupling mechanisms among photo-thermo-electromechanical/control fields are investigated and parametric evaluation of various design parameters of a hybrid photostrictive/elastic beam is conducted. A mathematical model for a laminated beam with segmented photostrictive actuators is defined, followed by photodeformation induced modal control forces and moments of segmented actuators. Characteristics of actuation and control effectiveness of distributed photostrictive actuators at various locations, natural modes and illumination intensities are analyzed in case studies. The most effective actuator location(s) for controlling the first four beam modes are illustrated. Finally, with scheduling light irradiations on various photostrictive actuators, one can control multiple beam modes, allowed by control electronics and material response.


Author(s):  
H. S. Tzou ◽  
C.-S. Chou

Abstract Optically driven actuators can introduce remote actuation and control effects without any hard-wire connections. In this study, photostrictive {opto-piezoelectric) characteristics and photodeformation of distributed photostrictive optical actuators are investigated and a parametric study of design parameters is conducted. Photodeformation induced by the photostrictive (opto-piezoelectric) effect (a combination of the photovoltaic effect and the converse piezoelectric effect) is discussed and its two-dimensional (2-D) constitutive relations are presented. 2-D equivalent control forces and moments induced by the photodeformation effect of distributed actuators are formulated, and system governing equations derived. Static and dynamic applications are discussed, and simulation studies of design parameters are conducted and evaluated.



Author(s):  
Hong-Hao Yue ◽  
Gui-Lan Sun ◽  
Zong-Quan Deng ◽  
Horn-Sen Tzou

Based on the photovoltaic effect and the converse piezoelectric effect, the lanthanum-modified lead zirconate titanate (PLZT) actuator can transform the photonic energy to mechanical strain/stress — the photodeformation effect. This photodeformation process can be further used for non-contact precision actuation and control in various structural, biomedical and electromechanical systems. Although there are a number of design configurations of distributed actuators, e.g., segmentation and shaping, been investigated over the years, this study is to explore a new actuator configuration spatially bonded on the surface of shell structures to broaden the spatial modal controllability. A mathematical model of a new multi-degree-of-freedom (DOF) photostrictive actuator configuration is presented first, followed by the photostrictive/shell coupling equations of a cylindrical shell structure laminated with the newly proposed multi-DOF distributed actuator. Distributed microscopic photostrictive actuation and its contributing components are analyzed in the modal domain. Effects of shell’s curvature and actuator’s size are evaluated. Parametric analyses suggest that the new multi-DOF distributed actuator, indeed, provides better performance and control effect to shell actuation and control. This multi-DOF configuration can be further applied to actuation and control of various shell and non-shell structures.



Author(s):  
Jing Jiang ◽  
Hong-Hao Yue ◽  
Zong-Quan Deng ◽  
Horn-Sen Tzou

Light-driven photostrictive actuators can induce control actions capable of wireless non-contact actuation and control of precision structures and systems. Conventional distributed actuators laminated on shells and plates usually introduce only uniform control forces and moments. Structural actuation and control based on uniform control forces and moments have been investigated for over two decades. This paper is to exploit a new photostrictive actuator design, i.e., a skew-quad (SQ) actuator system and this new distributed SQ system laminated on shells and plates can introduce non-uniform control forces and moments. The new SQ actuator system is composed of four pieces of photostrictive materials and inner two edges of each piece are bonded to a cross fixture. Under the irradiation of high-energy lights, each piece generates non-uniform control forces and moments, due to its uneven nonsymmetrical boundary conditions. Modal actuation characteristics of a cylindrical shell coupled with a center-placed and corner-placed skew-quad actuator system are evaluated respectively. A paired-design regulating positive/negative control forces of each actuator region is proposed to improve the control effectiveness of the center-located skew-quad actuator system. Parametric analysis proves improved control effectiveness of unsymmetrical shell modes.



Author(s):  
Mosfequr Rahman ◽  
John E. Jackson

The objective of this work is to study the effect of three important parameters such as photostrictive actuator thickness, incident light intensity and convective heat transfer coefficient on a silicon cantilever beam with thin photostrictive optical actuator film surface. The authors have developed a computational method useful for design of systems incorporating thin film photostrictive actuators. The element has been implemented in an in-house finite element code named BAMAFEM. A finite element for static analysis of photostrictive thin films has already been developed and verified with analytical analysis approach of another author. To the best of our knowledge, finite element parametric analysis of the photostrictive thin film has not been extensively studied, if studied at all. Photostrictive materials, such as PLZT, demonstrate significant photostrictive behavior under illumination by high-energy light, which can be considered a superposition of a bulk photovoltaic effect and a converse piezoelectric effect. Photostrictive actuators can directly convert photonic energy to mechanical motion. Photostrictive materials can produce strain as a result of irradiation from high-intensity light. Neither electric lead wires nor electric circuits are required. Thus, photostrictive actuators are relatively immune from electrical interference. They have potential use in numerous MEMS devices. At least from the computational point of view, it would be interesting to investigate the effect of different parameters in the actuation of beam using the thin film photostrictive actuators to develop a finite element model useful for design of numerous MEMS and NANO systems having photostrictive actuators.



2012 ◽  
Vol 134 (2) ◽  
Author(s):  
J. Jiang ◽  
H. H. Yue ◽  
Z. Q. Deng ◽  
H. S. Tzou

Light-driven photostrictive actuators can induce control actions for wireless non-contact actuation and control of precision structures and systems. Conventional distributed actuators laminated on shells and plates usually only introduce uniform control forces and moments. Structural actuation and control based on uniform control forces and moments have been investigated for over two decades. This paper is to exploit a new photostrictive actuator design, i.e., a skew-quad (SQ) actuator system. This new distributed SQ actuator system laminated on shells and plates can introduce non-uniform control forces and moments. The new SQ actuator system is composed of four pieces of photostrictive materials and the inner two edges of each piece are bonded to a cross fixture. Under the irradiation of high-energy lights, each piece generates non-uniform control forces and moments, due to its uneven non-symmetrical boundary conditions. Modal actuation characteristics of a cylindrical shell coupled with the center-placed and corner-placed SQ actuator systems are evaluated respectively. A paired-design regulating positive/negative control forces of each actuator region is also proposed and evaluated to improve the control effectiveness of the center-located SQ actuator system. Parametric analysis proves improved control effectiveness of unsymmetrical shell modes.



Author(s):  
A. R. Millner

A low-drag, low-power magnetic bearing and a permanent magnet brushless d-c motor-generator have been developed for a satellite flywheel. These will be combined with a terrestrial flywheel and control electronics to make up a flywheel energy storage and conversion system for use in a stand-alone solar photovoltaic residence. Technical and economic performance analyses indicate that, contrary to general thought, a flywheel system will be competitive if not superior to more conventional systems utilizing either present-day or advanced batteries. This derives from the ability of the flywheel to perform the functions of d-c to a-c inversion and optimal impedance matching between the PV arrays and the load in addition to providing energy storage. The motor-generator design will also be discussed. This paper describes the structural topology, performance data, design parameters, and test measurements of the magnetic bearing and motor-generator as well as a description of the flywheel and control electronics to be used. A preliminary discussion of the economic aspects is also included.



Author(s):  
H. S. Tzou ◽  
Huiyu Li ◽  
Hua Li

The objective of this study is to demonstrate the feasibility that a fully-coupled nonlinear piezo(electric)-thermoelastic/control structronic systems can be represented by a single micro-electronic chip. This non-volatile chip is a poTable.lle miniature hardware that serves as a design standard for future calibration and diagnosis of the original “large-scale” structronic system and it can be used anywhere after any catastrophic disruption in extreme hostile environments. Distributed control of a nonlinear structronic beam system (i.e., an elastic beam laminated with distributed sensors/actuators and coupled with control electronics) subjected to mechanical and temperature excitations has been investigated recently. This study is to design an integrated electronic circuit chip encompassing the complete piezothermoelastic and control behavior of the nonlinear structronic beam system. The fully coupled nonlinear beam equations are first discretized into a number of “elements” and each element can be implemented by an active circuit block including operational amplifiers, resistors, capacitors, and other nonlinear multipliers. Signals from the integrated circuit chip of the coupled nonlinear piezothermoelastic beam system are favorably compared with analytical solutions.



2003 ◽  
Vol 125 (4) ◽  
pp. 577-584 ◽  
Author(s):  
H. S. Tzou ◽  
J. H. Ding

Paraboloidal shells of revolution are commonly used in communication systems, precision opto-mechanical systems and aerospace structures. This study is to investigate the precision distributed control effectiveness of adaptive paraboloidal shells laminated with segmented actuator patches. Mathematical models of the paraboloidal shells laminated with distributed actuator layers subjected to mechanical, temperature, and control forces are presented first. Then, formulations of distributed actuating forces with their contributing micro-meridional/circumferential membrane and bending components are derived using an assumed mode shape function. Studies of actuator placements, actuator induced control forces, micro-contributing components, and normalized actuation authorities of paraboloidal shells are carried out. These forces and membrane/bending components basically exhibit distinct modal characteristics influenced by shell geometries and other design parameters. Analyses suggest that the membrane-contributed components dominate the overall control effect. Locations with larger normalized forces indicate the areas with high control efficiencies, i.e., larger induced actuation force per unit actuator area. With limited actuators, placing actuators at those locations would lead to the maximal control effects of paraboloidal shells.



Author(s):  
Mosfequr Rahman ◽  
Masud Nawaz ◽  
John E. Jackson

Photostrictive materials are lanthanum-modified lead zirconate titanate (Pb, La)(Zr, Ti) O3 ceramics doped with WO3, called PLZT, exhibit large photostriction under uniform illumination of high-energy light. Photostrictive materials are ferrodielectric ceramics that have a photostrictive effect. Photostriction arises from a superposition of the photovoltaic effect, i.e. the generation of large voltage from the irradiation of light, and the converse-piezoelectric effect, i.e. expansion or contraction under the voltage applied. When non-centrosymmetric materials, such as ferroelectric single crystals or polarized ferroelectric ceramics, are uniformly illuminated, a high voltage, considerably exceeding the band gap energy, is generated. Along with this photovoltage, mechanical strain is also induced due to the converse piezoelectric effect. Photostrictive materials offer the potential for actuators with many advantages over traditional transducing electromechanical actuators made of shape memory alloys and electroceramics (piezoelectric and electrostrictive). Drawback of traditional actuators is that they require hard-wired connections to transmit the control signals which introduce electrical noise into the control signals; on the other hand PLZT actuators offer non-contact actuation, remote control, and immune from electric/magnetic disturbances. Some experimental research has been conducted on the use of PLZT materials, such as optical motor as an electromechanical device suitable for miniaturization, micro-waking machine, photo driven relay device using PLZT bimorphs and high speed (less than 10 ns), low-voltage, low power consumption optical switch. Authors have developed a computational method and implemented in an in-house finite element code which will be useful for designing systems incorporating thin film photostrictive actuators. The purpose of this current research work is to design and develop an experimental test set-up for photostriction effect measurement of PLZT thin film of different thickness, size and location on silicon wafer as smart beams, which may be useful for various MEMS device as optical actuator. The experimental results will be verified by comparing with the FEA modeling results.



Author(s):  
H. S. Tzou ◽  
B. J. Liu

Abstract Non-contact light activated distributed opto-electromechanical actuators represent a new class of precision distributed actuator which are based on the photodeformation process and controlled by high energy lights, e.g., lasers and ultra-violet lights. Fundamental opto-thermo-electromechancial constitutive relations are discussed and formulations of optically induced control forces and moments introduced. Mathematical modeling and analysis of distributed opto-electromechanical shell actuators are presented. A generic distributed photo-actuation theory is proposed and the closed-loop opto-thermo-electromechancial equations of circular cylindrical shells are derived. The systems equations reveal the couplings among elasticity, photodeformation, pyroelectricity, and thermoelasticity. Active distributed control of flexible cylindrical shells using segmented distributed opto-electromechanical shell actuators are investigated and the control effectiveness is evaluated. Membrane and bending control effects are evaluated. Time history analyses of independent modal control reveal that the Lyapunov control is more effective than the proportional feedback control.



Sign in / Sign up

Export Citation Format

Share Document