Simultaneous Hierarchical and Multi-Level Optimization for Material Characterization and Design of Experiments

Author(s):  
John G. Michopoulos ◽  
Tomonari Furukawa ◽  
John C. Hermanson ◽  
Samuel G. Lambrakos

A hierarchical algorithmic and computational scheme based on a staggered design optimization approach is presented. This scheme is structured for unique characterization of many continuum systems and their associated datasets of experimental measurements related to their response characteristics. This methodology achieves both online (real-time) and offline design of optimum experiments required for characterization of the material system under consideration, while also achieving a constitutive characterization of the system. The approach assumes that mechatronic systems are available for exposing specimens to multidimensional loading paths and for the acquisition of data associated with stimulus and response behavior. Material characterization is achieved by minimizing the difference between system responses that are measured experimentally and predicted based on model representation. The performance metrics of the material characterization process are used to construct objective functions for the design of experiments at a higher-level optimization. The distinguishability and uniqueness of solutions that characterize the system are used as two of many possible measures adopted for construction of objective functions required for design of experiments. Finally, a demonstration of the methodology is presented that considers the best loading path of a two degree-of-freedom loading machine for characterization of the linear elastic constitutive response of anisotropic materials.

Author(s):  
Julio Mar-Ortiz ◽  
Alex J. Ruiz Torres ◽  
Belarmino Adenso-Díaz

AbstractThis paper explores the characteristics of solutions when scheduling jobs in a shop with parallel machines. Three classical objective functions were considered: makespan, total completion time, and total tardiness. These three criteria were combined in pairs, resulting in three bi-objective formulations. These formulations were solved using the ε-constraint method to obtain a Pareto frontier for each pair. The objective of the research is to evaluate the Pareto set of efficient schedules to characterize the solution sets. The characterization of the solutions sets is based on two performance metrics: the span of the objective functions' values for the points in the frontier and their closeness to the ideal point. Results that consider four experimental factors indicate that when the makespan is one of the objective functions, the range of the processing times among jobs has a significant influence on the characteristics of the Pareto frontier. Simultaneously, the slack of due dates is the most relevant factor when total tardiness is considered.


2009 ◽  
Vol 29 (1) ◽  
pp. 43-66 ◽  
Author(s):  
Isis Didier Lins ◽  
Enrique López Droguett

This paper attempts to provide a more realistic approach to the characterization of system reliability when handling redundancy allocation problems: it considers repairable series-parallel systems comprised of components subjected to corrective maintenance actions with failure-repair cycles modeled by renewal processes. A multiobjective optimization approach is applied since increasing the number of redundancies not only enlarges system reliability but also its associated costs. Then a multiobjective genetic algorithm is coupled with discrete event simulation and its solutions present the compromise between system reliability and cost. Two examples are provided. In the first one, the proposed algorithm is validated by comparison with results obtained from a system devised as to allow for analytical solutions of the objective functions. The second case analyzes a repairable system subjected to perfect repairs. Results from both examples show that the proposed method can be a valuable tool for the decision maker when choosing the system design.


Author(s):  
Satish Kodali ◽  
Chen Zhe ◽  
Chong Khiam Oh

Abstract Nanoprobing is one of the key characterization techniques for soft defect localization in SRAM. DC transistor performance metrics could be used to identify the root cause of the fail mode. One such case report where nanoprobing was applied to a wafer impacted by significant SRAM yield loss is presented in this paper where standard FIB cross-section on hard fail sites and top down delayered inspection did not reveal any obvious defects. The authors performed nanoprobing DC characterization measurements followed by capacitance-voltage (CV) measurements. Two probe CV measurement was then performed between the gate and drain of the device with source and bulk floating. The authors identified valuable process marginality at the gate to lightly doped drain overlap region. Physical characterization on an inline split wafer identified residual deposits on the BL contacts potentially blocking the implant. Enhanced cleans for resist removal was implemented as a fix for the fail mode.


Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 29
Author(s):  
Carl F. O. Dahlberg ◽  
Jonas Faleskog ◽  
Per-Lennart Larsson

Correlation of sharp indentation problems is examined theoretically and numerically. The analysis focuses on elastic-plastic pressure-sensitive materials and especially the case when the local plastic zone is so large that elastic effects on the mean contact pressure will be small or negligible as is the case for engineering metals and alloys. The results from the theoretical analysis indicate that the effect from pressure-sensitivity and plastic strain-hardening are separable at correlation of hardness values. This is confirmed using finite element methods and closed-form formulas are presented representing a pressure-sensitive counterpart to the Tabor formula at von Mises plasticity. The situation for the relative contact area is more complicated as also discussed.


2013 ◽  
Vol 20 (10-11) ◽  
pp. 1975-1979 ◽  
Author(s):  
J. Vogel ◽  
H.-J. Feige ◽  
J. Saupe ◽  
S. Schubert ◽  
J. Grimm

Sign in / Sign up

Export Citation Format

Share Document